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ABSTRACT

The complexities of performing multi-site longitudinal diffusion-weighted imag-

ing (DWI) studies requires careful construction of analysis tools and procedures. Pro-

posed clinical trials for therapies in neurodegenerative disease are known to require

several hundred subjects, thus mandating multiple site participation to obtain suffi-

cient sample sizes. DWI is an important tool for monitoring diffusivity properties of

white matter (WM) in disease progression. The multi-site nature of clinical trials re-

quires new strategies in DWI processing and analysis to reliably measure longitudinal

WM changes. This work describes the process of developing and validating robust

analysis methodologies to process multi-site DWI data in a rare, neurodegenerative

disease. Key processing components to accomplish a robust DWI processing system

include: DICOM conversion, automated quality control, unbiased atlas construction,

fiber tracking, and statistical analysis. Extensive validation studies were performed to

characterize methodological results within and across the common confounds inherent

in multi-site clinical trials.

The conversion and automated quality control tools optimized for this work

both enhanced the ability to reliably obtain repeat diffusion tensor image (DTI) scalar

measurements in a reliability analysis of healthy controls scanned at multiple sites

using multiple scanner vendors. A DTI scalar analysis performed on focused WM

regions showed it was possible to detect significant mean differences of DTI scalars

among separate groups of a neurodegenerative disease population. The DTI scalar
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analysis paved the way for an atlas-based cross-sectional fiber tracking analysis. In

the cross-sectional fiber tracking analysis, multi-site data was brought into the same

space, making major fiber tracts terminating in the focused WM regions of the scalar

analysis from all participants comparable. Significant differences in diffusivity were

found throughout each tract among separate groups of the neurodegenerative disease

population. In addition, multiple neuropsychological cognitive variables that have

a documented ability to track disease progression of the neurodegenerative disease,

strongly correlated with many of the DTI scalars in each tract. The findings of the

cross-sectional fiber tracking analysis were reinforced by similar findings produced by

a longitudinal fiber tracking analysis. Collectively, these findings suggest that cogni-

tive deficits seen in the neurodegenerative disease population could be explained by

changes in diffusivity of the tracts explored in this work. In addition to the longi-

tudinal fiber tracking analysis examining diffusivity, methods for a WM morphology

analysis using parallel transport to apply longitudinal volume changes to a template

was explored.
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CHAPTER 1
UNDERSTANDING DIFFUSION WEIGHTED IMAGING AND ITS

ROLE IN INVESTIGATING WHITE MATTER DISEASE

1.1 Introduction

Huntington’s disease (HD) is a fatal, autosomal-dominant disease that is char-

acterized by its motor, cognitive, and psychiatric symptoms with no cure. Thus,

efforts are being made to develop treatments that slow or stop disease progression

before debilitating symptoms appear. The problem with developing treatments for

an illness at its prodromal stage is that clinically observable indicators of disease pro-

gression that would determine treatment efficacy in clinical trials are often limited

at best. Researchers have thus turned to imaging to identify a non-invasive contin-

uous parameter that correlates with HD disease progression [2]. Volumetric imaging

studies on prodromal HD patients have shown that white matter (WM) volume is

abnormal as many as twenty years before symptom onset [3]. Therefore, quantify-

ing WM changes with a method more sensitive than structural imaging has been

targeted as a way to develop a biomarker of disease progression in prodromal HD pa-

tients. DWI could provide the level of sensitivity needed, given its ability to extract

diffusivity information specific to different tissues.

Proposed clinical trials for therapies are anticipated to require several hundred

subjects. Therefore, clinical studies investigating DWI variables to be used in clinical

trials need to operate on grander scales by collecting DWI data at multiple sites to

increase their volume of data. To meet their DWI data processing needs, researchers
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often turn to the several easily accessible DWI processing tools. Many easily ac-

cessible DWI processing tools offer the basic discrete phases of DWI pre-processing

deemed essential by the literature: file format conversion from DICOM files, b = 0

image averaging, removal of motion artifacts between gradient directions, diffusion

tensor image (DTI) estimation, and scalar calculation. However, since these DWI

pre-processing tools have primarily been developed for cross-sectional, single scanner

analysis, compatibility issues arise because the tools have not been extensively tested

on a wide range of data. In addition, it is difficult to ensure homogeneity of data

quality collected at multiple sites. Operating on a grander scale also means expanding

from cross-sectional to longitudinal studies with more elaborate DWI data analyses.

A great body of work has been done in analyses that represent diffusion as a scalar

value in regions of interest in the brain or physical representations of WM pathways.

However, these existing studies are mostly cross-sectional and show only group dif-

ferences in diffusivity. In order to meet the growing needs of large clinical trials,

methods for conducting elaborate DWI analyses such as multi-site longitudinal fiber

tracking studies that monitor changes in individual subjects must be investigated.

1.2 Huntington’s disease

Huntington’s disease (HD) is a progressive disorder characterized by motor,

cognitive, and behavioral disturbances. HD is inherited in an autosomal dominant

fashion where there is an expansion of polygutamine (cytosine-adenine-guanine, CAG)

repeats in the huntingtin gene [4]. The manifestation of motor symptoms signals the
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onset of the disease that on average occurs in the fourth decade of life with a duration

of 15 to 20 years [5, 6]. Unfortunately, available pharmacologic options for treatment

do not slow or stop disease progression and only target symptoms. Therefore, there

are several groups, such as PREDICT-HD and TRACK-HD, whose primary interest

is to identify biomarkers of disease progression to judge efficacy of new treatments

[7, 8].

1.2.1 Imaging studies on prodromal HD and HD

1.2.1.1 Striatal volume studies

In the search for a realiable disease marker, MRI has uncovered several con-

sistent features of disease progression in both symptomatic and prodromal (or pre-

symptomatic) HD individuals. The first MRI studies revealed that symptomatic HD

patients possessed marked atrophy of the caudate and putamen [9]. Decreased basal

ganglia volumes have also been seen in the prodromal stage of HD and correlated with

greater neurological impairment [10, 11], poorer performance on cognitive assessments

[10], and years to motor sign/symptom onset [12, 11].

1.2.1.2 White matter volume studies

Tissue atrophy is not limted to the basal ganglia in HD indivdiuals. Decreased

WM volume has been demonstrated in prodromal HD individuals more than 15 years

from diagnosis [3, 13] and has a greater correlation with cognitive deficits in symp-

tomatic HD individuals than decreased striatal volume and cognitive deficits [14]. As

for specific regions of WM, features of frontal lobe WM have consistently tracked with
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the clinical features of HD. Much like striatal volume, frontal lobe WM volume was

first shown to be decreased in symptomatic HD individuals [15]. Frontal lobe WM

atrophy has also been demonstrated in prodromal HD individuals over a two-year

period, where the rate of atrophy was greater than those seen in both temporal and

parietal lobe WM [16]. In fact, frontal lobe WM volume change may require the

smallest sample size out of all volume outcome measures (i.e. basal ganglia or whole

brain volumes) that are likely to be used in a prodromal HD clinical trial [16].

1.2.1.3 DTI studies

Although WM volume has been shown to correlate with features of disease

progression, volume information alone does not reflect altered WM integrity. Re-

searchers have thus turned to more sophisticated imaging methods to detect changes

in brain structures that elucidate more specific informtion to the disease process. One

such imaging method is diffusion-weighted imaging (DWI) that can detect varying

levels of anisotropic diffusion that could represent altered WM integrity in diseased

tissue [17, 18, 19]. Overall, DTI studies on prodromal and symptomatic HD partici-

pants demonstrate diffusivity changes in WM to explain increased motor signs with

disease progression. Many DWI studies involving HD participants have focused on

WM of the motor loop [20, 21, 22, 23], periventricular region [24], corpus callosum

[20, 25, 21, 26, 27, 22, 23, 28, 29, 30], corona radiata [25, 21, 22, 23], and whole brain

[24, 20]. Another region of interest in HD disease progression is the prefrontal cor-

tex (PFC) due to its prominent striatal connections. The dorsolateral PFC projects
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to the central to dorsal caudate (dorsal loop), while the orbital PFC and rostral

anterior cingulate cortex projects to the ventromedial caudate and ventral striatum

(ventral loop) [31, 32]. Based on the striatal dorsal-to-ventral progression of cell death

[33], Lawrence and colleagues hypothesized that functions associated with the dorsal

PFC-striatal loop may be impaired before motor sign/symptom onset, followed by

impairment of functions associated with the ventral loop as neuronal loss increases

[34]. Voxel-based scalar studies on PFC WM have reported clusters of voxels contain-

ing significant changes in diffusivity in both prodromal [35, 20, 36] and symptomatic

HD [20, 37] participants in the form of both increased and/or decreased FA and in-

creased MD in comparison to controls. ROI-based scalar analyses of PFC WM have

also reported decreased FA and increased MD in WM passing through the superior

frontal cortex in early HD [30].

Several groups have moved beyond ROI-based scalar analyses to examining

the diffusivity of WM in the corticostriatal pathways in HD and prodromal HD par-

ticipants with tract-based analyses. One type of tract-based analysis used by a few

groups involved reconstructing the WM pathway between a start and end region with

a fiber tracking algorithm [38, 39]. Once the fibers are reconstructed, either degree of

connectivity between the start and end points was quantified or mean DTI scalars over

the fibers were computed. In prodromal HD participants, the number of corticofugal

fibers reaching the body of the caudate were reduced [40]. As for HD participants,

various connections to the caudate were also reduced [41] and significant changes in

diffusivity in connections to the striatum were seen in comparison to controls [42].
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Another type of tract-based analysis that has been performed on HD partici-

pants is called tract-based spatial statistics (TBSS). The methodology of TBSS tries

to isolate tract analysis to regions that have the highest likelihood of being WM by

creating an FA skeleton along all WM in the brain based on FA images from all the

participants in the study. FA values of voxels around the FA skeleton are projected

to the skeleton to create weighted average FA values on the FA skeleton for each

participant. The weighted averages of FA values on the FA skeleton are then used

in a voxel-based analysis of voxels on the FA skeleton. These TBSS studies normally

report decreased FA and increased MD, AD, and RD in various WM regions, such as

the thalamic radiation, internal capsule, external capsule, and corticospinal tracts in

prodromal HD and HD participants [21, 22, 23, 29].

1.2.1.4 Longitudinal studies

Early cross-sectional volumetric findings in the striatum [9] have been sup-

ported by several volumetric longitudinal studies that report greater rates of atrophy

in the caudate and putamen of symptomatic HD patients over periods of time ranging

from 10 to 27 months in comparison to controls [43, 44, 45, 46, 47, 48, 8, 49]. Similar

findings of greater caudate and putamen atrophy rates in comparison to controls have

also been reported by studies on prodromal HD individuals [50, 51, 47, 16, 52, 8, 49].

In addition, when prodromal HD participants were compared to symptomatic HD

participants in the same study, similar atrophy patterns were seen in both groups

but to a lesser degree in the prodromal group [47, 8, 49]. Aside from the striatum,
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brain volume and the major tissue classes have been assessed longitudinally in HD.

Whole brain atrophy can be detected across a time frame as short at six months in

early symptomatic HD patients [53] and as early as prodromal participants close to

symptom onset over a one-year period [54, 8]. Atrophy rates of major tissue classes

as a whole (gray matter, WM, and CSF) [51] and in specific regions [47, 48, 8, 49]

even in participants furthest from disease onset.

As for DWI, all existing longitudinal studies have been done on early to mod-

erate HD participants and only one of them evaluated WM. Weaver et al. was among

the first to perform a longitudinal analysis on HD participants, using two DWI scans

collected one year apart and TBSS [25]. Weaver et al. showed widespread changes

in AD, RD, and FA that were greater in HD participants in comparison to controls,

and concluded that FA change in the corpus callosum was stable enough to possibly

serve as a reliable biomarker of disease progression [25]. Another longitudinal study

compared how well the diffusion trace of the striatum could track with disease pro-

gression in comparison to volume of the striatum in HD participants, and concluded

that volume was more sensitive to disease progression than the diffusion trace [45].

The largest longitudinal study in HD found higher MD in the caudate and putamen

bilaterally for 18 HD participants in comparison to 17 controls at two time points

that were 1 year apart [27].
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1.3 Diffusion-weighted imaging

1.3.1 The imaging sequence: Stejskal-Tanner sequence

Diffusion is normally measured with a Stejskal-Tanner sequence that is a spin-

echo sequence with pulsed field gradients to spatially encode diffusion. The Stejskal-

Tanner sequence begins with an initial magnetization vector aligned along the z-axis,

which is the net magnetic moment of protons spinning at the same Larmor or res-

onance frequency of the main magnetic field. A slice-selecting 90o radio frequency

(RF) excitation pulse is applied to rotate the initial magnetization aligned along the

z-axis into the transverse (xy) plane. While in the transverse plane, individual spins

are allowed to precess at their individual Larmor frequencies or dephase from the

resonance frequency of the main magnetic field. Dephasing occurs because differ-

ent spins encounter different magnetic gradients depending on their location. As a

result, the transverse magnetization vector decrease in magnitude. These individ-

ual Larmor frequencies are spatially encoded through the application of identical

diffusion-sensitizing gradients in a given direction that surround an 180o refocusing

pulse. For example, if the diffusion-sensitizing gradient is applied in the x direction,

the Larmor frequencies will vary with position in the x direction [55, 56].

If no diffusion occurs (excited spins do not change location in the x direction)

during the first diffusion-sensitizing gradient, the 180o refocusing pulse will realign

a large percentage of those spins of the individual Larmor frequencies and restore

the transverse magnetization vector. The transverse magnetization will be slightly

less than its initial magnitude due to the spin-spin (T2) relaxation. However, if spins
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diffuse and change location during the first diffusion-sensitizing gradient, their Larmor

frequencies will be different from the frequencies before the refocusing pulse. This

change in Larmor frequencies is reflected in an inability to restore the transverse

magnetization vector magnitude, where the decrease in magnitude is greater than

that caused by spin-spin relaxation. The transverse magnetization is the net signal

intensity (SI) and is detected during the echo. The faster that spins move in the

direction of the diffusion-sensitizing gradient during the spin-echo period (TE, from

90o pulse to the first echo), the greater the signal loss [55, 56].

A DWI image without a diffusion-sensitizing gradient looks similar to a stan-

dard morphometric T2-weighted image because it is basically an echo-planar image

(EPI) (CSF is bright, gray matter is bright gray, white matter is the dark gray). A

DWI image with a diffusion-sensitizing gradient will instead have areas of signal loss

(black) that represents diffusion occurring during the scan (Figure 1.1). Signal loss

is also dependent on the strength and duration of the diffusion-sensitizing gradient

field, also known as the diffusion-weighted factor or b factor (units = sec/mm2), and

D, the apparent diffusion coefficient or ADC (units = mm2/sec). Net signal inten-

sity decay in homogeneous, isotropic systems such as pure liquid can be modeled as

monoexponential decay for b factors as high as 2000 s/mm2:

SI = S0exp(−bD) (1.1)

where S0 is the signal intensity without diffusion-sensitizing gradients and includes

the effects of proton density and T2 relaxation [57, 58, 59, 60].
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(A) (B) 

Figure 1.1: Images with and without a diffusion-sensitizing gradient. (A) DWI image
without a diffusion-sensitizing gradient (CSF is white, gray matter is gray, WM is the
darkest object). (B) DWI image with a diffusion-sensitizing gradient, where areas of
signal loss or detected diffusion appear black.

1.3.2 Quantifying diffusion from imaging information

1.3.2.1 General mathematics used to quantify diffusion

It must be noted that Eq. 1.1 is a monoexponential model for net signal inten-

sity decay with scalar quantities: the b factor is a predetermined parameter for the

scanning protocol, SI and S0 are empirically measured by the scanner during each

image acquisition, and D is estimated after the scan. As mentioned earlier, the b

factor is the strength and duration of the diffusion-sensitizing gradient field. It is ob-

tained by integrating over k-space, over the trapezoidal diffusion-sensitizing gradient

scheme at the echo time (t = TE) and simplifies to the following formula:

b = γ2G2[δ2(∆− δ/3) + ε2/30− δε2/6] (1.2)

where G is maximum gradient strength, ε is the rise and fall time of the gradient, δ is

the gradient duration, and ∆ is gradient separation time. The b factor of a gradient
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(also known as the b value) is part of the b matrix that is used as input for the scanner

to determine the direction of the diffusion weighting for each diffusion-sensitizing

gradient. Therefore, each diffusion-sensitizing gradient has its own b matrix [61,

62, 63]. Section 1.3.2.2 covers the original derivation of the b matrix from diffusion

weighting vector coordinates, along with a simplified method for b matrix design.

In practice, D is calculated by obtaining signal measurements (S1 and S2) at

a low b factor, b1, and a high b factor, b2, while keeping all other parameters identical.

S1 = S0exp(−b1D)

S2 = S0exp(−b2D)

S1/S2 = exp[(b2 − b1)D]

D = ADC = ln(S1/S2)/(b2 − b1) (1.3)

Signal measurements obtained at a low b factor are normally done using a spin-

echo sequence in the absence of diffusion-sensitizing gradients. In the absence of

diffusion-sensitizing gradients, b1 is assumed to be assumed to be zero because imaging

gradients usually provide a very low b factor. Since the same b factor will appear in

b1 and b2, the b1 factor will disappear in the term b2− b1. Thus, Eq. 1.3 simplifies to:

D = ADC = ln(S0/S2)/b = (ln(S0)− ln(S2))/b (1.4)

where b is equal to b2− b1 and S0 replaces S1 to represent the signal intensity without

a diffusion-sensitizing gradient [57, 58, 59, 60, 64].

The scalar, D, can also be expressed as a vector, D, that contains the six

unique components of the estimated symmetric diffusion tensor. D can be calculated
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at each voxel to produce a diffusion tensor image (DTI), which is one of the most

popular models for estimating diffusion. In Section 1.3.3.1, two methods for calcu-

lating components of the diffusion tensor using information from multiple diffusion-

sensitizing gradients and the overall concept of Eq. 1.4 are shown.

1.3.2.2 The b matrix

1.3.2.2.1 Calculation of the b matrix

In order to describe free diffusion in an anisotropic medium, Stejskal modified

the Bloch-Torrey equation to read as follows [56]:

∂M

∂t
= γM×B− (Mxı̂+My ̂)

T2

+
(M0 −Mz)k̂

T1

−∇ · vM +∇ ·D · ∇M (1.5)

The solution to Eq. 1.5 describes free diffusion in an anisotropic medium by relating

echo intensity to the b matrix in terms of the applied magnetic-field-gradient vector

(G(t)) and its time integral (F(t)). The gradient directions must be expressed in three

orthogonal directions such as the x, y, and z-axes of the magnet’s gradient system.

Since it is good practice to measure diffusion in additional directions that are not

parallel to the x, y, and z-axes, multiple gradients must be used simultaneously to

create oblique diffusion-sensitizing gradients. When multiple gradients are turned on,

a 3x3 symmetric b matrix is used to represent the oblique diffusion-weighting created

for the 3D case (2x2 matrix for 2D) with six different terms: bxx, byy, bzz, bxy = byx,

bxz = bzx, and byz = bzy [56, 62, 64, 65].

The b matrix is calculated in three steps. First, the gradient column vector is
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determined with the gradient intensities, g(t′′), in each direction at each time t′′:

G(t′′) = [gx(t
′′), gy(t

′′), gz(t
′′)]T (1.6)

Then, G(t′′) is integrated over time t′′ to determine the total field offset column vector,

F(t′), that is used to compute the k-space column vector. γ is the gyromagnetic ratio.

F(t′′) = [Fx(t
′), Fy(t

′), Fz(t
′)]T (1.7)

k(t′) = γF(t′) = [kx(t
′), ky(t

′), kz(t
′)]T = [γFx(t

′), γFy(t
′), γFz(t

′)]T (1.8)

The overall equation for calculating the k-space column vector is as follows:

k(t′) = γF(t′) = γ

∫ t′

0

G(t′′) dt′′ − 2H(t′ − t1)k(t−1 ) (1.9)

The Heaviside unit-step function,

H(t) =


0 if t < 0

1 if t ≥ 0

(1.10)

accounts for the inversion of the accumulated k-space factor by the 180o refocusing

pulse at time t1. Prior to the refocusing pulse, the formula for k(t′) is:

k(t′ < t1) = γF(t−1 ) = γ

∫ t′

0

G(t′′) dt′′ (1.11)

The formula for k(t′) after the 180o refocusing pulse is:

k(t′ > t1) = γF(t−1 ) = γ

∫ t′

0

G(t′′) dt′′ − 2H(t− − t1)k(t−1 ) = γ

∫ t′

0

G(t′′) dt′′ − 2k(t−1 )

(1.12)
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where k(t−1 ) is the k-space column vector at the time of the refocusing pulse and is

equal to:

k(t−1 ) = γF(t−1 ) = γ

∫ t1

0

G(t′′) dt′′ (1.13)

The final step is to integrate kikj over time t to calculate the bij matrix element. The

overall b matrix elements are derived when t = TE. For example, the integral of k2
x

is used to calculate bxx (where t = TE):

bxx(t) = γ2

∫ t

0

[ ∫ t′

0

gx(t
′′) dt′′−2H(t

′ − t1)kx(t
−
1 )

]
×[ ∫ t′

0

gx(t
′′) dt′′ − 2H(t

′ − t1)gx(t
−
1 )

]T
dt′

(1.14)

The entire b matrix calculation can be expressed concisely as:

b(t) =

∫ t

0

k(t′)kT (t′) dt′ = γ2

∫ t

0

F(t′)FT (t′) dt′ (1.15)

b(t) = γ2

∫ t

0

[ ∫ t′

0

G(t′′) dt′′−2H(t
′ − t1)k(t−1 )

]
×[ ∫ t′

0

G(t′′) dt′′ − 2H(t
′ − t1)k(t−1 )

]T
dt′

(1.16)

where the first part of Eq. 1.16 is a column vector and the second is a row vector that

will result in a symmetric 3x3 b matrix.

The b matrix is related to signal intensity by replacing the exponent in the

monoexponential decay equation (Eq. 1.1) with the generalized dot product of the b

matrix and the diffusion tensor D:

SI = S0exp(−b ·D)

b ·D =

∫ TE

0

kT (t′)Dk(t′) dt′ = γ2

∫ TE

0

FT (t′)DF(t′) dt′ (1.17)

b ·D = bxxDxx + byyDyy + bzzDzz + bxyDxy + bxzDxz + byzDyz (1.18)
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The b matrix of a gradient is useful in one type of tensor calculation covered in

Section 1.3.3.1.3 [56, 62, 64, 65].

1.3.2.2.2 Simplified b matrix design

The process of designing the b matrix for each diffusion-sensitizing gradient

can be simplified by following two rules. The first rule is to express each gradient’s

diffusion-weighting direction as a unit vector or normalized gradient vector, Gn, so

that its vector dot product of Gn · Gn equals 1.

Gn = (gx, gy, gz)
T (1.19)

Gn ·Gn = g2
x + g2

y + g2
z = 1 (1.20)

The second rule is to use the same high b factor for each diffusion-sensitizing gradient.

The second rule also ensures that the total gradient amplitude will be the same for

each diffusion-sensitizing gradient. Following the two rules above allows a simpler

design of the b matrix via the product of the b factor, normalized gradient vector,

and its transpose. The resulting b matrix can then be used as scanner input or in

Eq. 1.18 as part of the process to estimate D [66].

g = GnGT
n =

gxgy
gx

(gx gy gz
)

=

 g2
x gxgy gxgz

gygx g2
y gygz

gzgx gzgy g2
z

 (1.21)

b = bg (1.22)

b ·D = bg ·D (1.23)
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1.3.3 Diffusion-weighted imaging data analysis

1.3.3.1 Diffusion tensor

One of the most commonly used models for estimating diffusion at the voxel

level is the diffusion tensor. In order to estimate the diffusion tensor in each voxel

of the tensor information such as signal intensity, b matrix from each diffusion-

sensitizing gradient, and normalized gradient components are necessary. Therefore,

the vectors for noisy observed data contain signal information from each gradient

direction measurement, while the calculated vectors containing diffusion tensor com-

ponents are the estimated diffusion for the corresponding voxel in the tensor image

[63].

In general, a single high b factor is used per scan due to non-monoexponential

signal decay. It is common practice to average all images in a scan whose b factor

equals zero (b = 0 image) than to fit them individually. The b = 0 image is then used

as the estimate for ln(S0) in Eq. 1.4.

There are two methods available for estimating the diffusion tensor and are

both described below. Both methods offer an unweighted-linear least-squares fit of

the logarithms of the signal intensities. The second method is used over the first

when a weighted-linear least-squares fit of the logarithms of the signal intensities is

necessary and offers more flexibility in the diffusion tensor estimation (described in

Section 1.3.3.1.3). The fitted signal intensities that result from the weighted-linear

least-squares fit should be closer to the true signal intensity values than the original

noisy value and can be used in a repeat weighted-linear least-squares fit [63]. Any
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linear least-squares fit can be used as a starting point for a nonlinear least-squares fit

(not described in this thesis) in the face of high noise levels [67].

1.3.3.1.1 Tensor math

A tensor is a mathematical object with nth-rank in m-dimensional space where

it has n indices and mn components. Each tensor index ranges over the number of

dimensions of space. Tensors have certain transformation properties, where objects

that transform like zeroth-rank tensors, first- rank tensor, and second-rank tensors,

are called scalars, vectors, and matrices, respectively [68]. The type of tensor that is

applicable here is the symmetric tensor, which is of second-rank. Since the symmetric

tensor is of second-rank, it can be expressed as a symmetric matrix, T [69]. The

components of the symmetric matrix have the property of:

Tmn = T nm (1.24)

and has scalar invariants (one component quantities that do not vary with with ro-

tations of the coordinate system) such as [69]:

s1 = A11 + A22 + A33 (1.25)

s2 = A22A33 + A33A11 + A11A22 − A2
23 − A2

31 − A2
12 (1.26)

1.3.3.1.2 Tensor estimation method 1

In the first method for estimating the diffusion tensor, the H matrix is used

to relate normalized gradient components to the observed data. The first method is

used when a weighted-linear least-squares fit of the logarithms of the signal intensities
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is not necessary. Multiple b = 0 acquisitions must be averaged to provide a single S0

value estimate.

b is a six-element column vector use to express the six unique diffusion tensor

elements:

d = [Dxx, Dyy, Dzz, Dxy, Dxz, Dyz]
T (1.27)

Each gradient encoding matrix is derived from the normalized gradient components,

gxi, gyi, and gzi, (for i = 1 to M number of gradients) and is represented as a six-

element row matrix, Hi (Eq. 1.28. The Hi vectors are combined into a large Mx6

matrix, where M is the number of measurements whose b > 0.

Hi = [g2
xi, g

2
yi, g

2
zi, 2gxigyi, 2gxigzi, 2gyigzi] (1.28)

H =

 g2
x1 g2

yi g2
zi 2gxigyi 2gxigzi 2gyigzi

...
...

...
...

...
...

g2
xM g2

yM g2
zM 2gxMgyM 2gxMgzM 2gyMgzM

 (1.29)

Observed data is expressed as the individual measured ADCs:

Yi = ln

(
S0

Si

)
/b (1.30)

Y =

[
ln
(
S0

S1

)
b

,
ln
(
S0

S2

)
b

, · · · ,
ln
(
S0

SM

)
b

]T
(1.31)

where Si is the observed signal for the ĝ gradient. Note that Yi is a volumetric image

with noisy data and is expressed as:

Y = Hd + η (1.32)

for each acquisition. If M = 6, d can be determined by the following calculation

(where η = 0 since η is not able to be distinguished from d) [63, 66, 70]:

(H−1H)d = d = H−1Y (1.33)
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However, if M > 6, an unweighted-linear least-squares fit of the logarithms of the

signal intensities is necessary. The pseudoinverse of the H matrix must be used since

H is not a square matrix and thus has no true inverse. The noisy data equation can

be solved by first calculating the pseudoinverse of H, which is Hψ:

HψH = I6x6

Hψ = (HTH)−1HT (1.34)

where HHψ does not have to equal IMxM . The matrix product HTH, which is a

square 6x6 matrix, is formed from Eq. 1.32 before the application of the pseudoinverse

(Eq. 1.34) to obtain d. It is again assumed that η = 0 since η is not able to be

distinguished from d [62, 63]:

HTY = HTHd

(HTH)−1HTHd = d = (HTH)−1HTY (1.35)

The pseudoinverse can also be obtained through singular value decomposition (SVD).

The H matrix is decomposed into the product of three matrices (U, V, and W):

U = Mx6 column orthogonal

V = 6x6 row and column orthogonal

W = 6x6 diagonal

VVT = I6x6

UTU = I6x6



www.manaraa.com

20

(W−1)ij =
1

Wij

H = UWVT (1.36)

and the pseudoinverse of H can be derived by [63]:

VW−1UTH = VW−1UTUWVT = I6x6 (1.37)

Hψ = (HTH)−1HT = VW−1UT (1.38)

1.3.3.1.3 Tensor estimation method 2

In the second method for estimating the diffusion tensor, the B matrix is used

to relate components of the b matrix to the observed data. The second method is used

when a weighted-linear least-squares fit of the logarithms of the signal intensities is

necessary. The second method also allows more flexibility than the first from several

reasons: 1) it allows the use of two ore more different high b factors, 2) an estimate

of ln(S0) is produced in the least-squares fit (while ln(S0) from the average b = 0

signal intensities is incorporated into the vector in the H matrix approach), 3) the

individual b = 0 images can be fitted separately or as an average, 4) the option of

using a weighted-linear least-squares fit exists, 5) a covariance matrix can be derived

and used for propagation-of-error calculations and DTI parameter optimization [63].

α is a seven-element column vector used to express the six diffusion tensor

elements and log of the b = 0 signal intensity (S0) [62]:

α = [Dxx, Dyy, Dzz, Dxy, Dxz, Dyz, ln(S0)]T (1.39)

Each element of each gradient direction’s b matrix is represented by a six-element row
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vector, bi (Eq. 1.40), which is included in a seven-element row vector, Bi (Eq. 1.41).

bi = (bxxi, byyi, bzzi, 2bxyi, 2bxzi, 2bbzi) (1.40)

Bi = (−bxxi,−byyi,−bzzi,−2bxyi,−2bxzi,−2bbzi, 1) (1.41)

The Bi row vectors as presented in Eq. 1.41 are assembled into a large Nx7 B matrix,

where N is the total number of measurements (gradients with b = 0 and b > 0):

B =

−bxx1 −byy1 −bzz1 −2bxy1 −2bxz1 −2bbz1 1
...

...
...

...
...

... 1
−bxxN −byyN −bzzN −2bxyN −2bxzN −2bbzN 1

 (1.42)

In the absence of noise, the logarithms of the predicted signal intensities are given by

an Nx1 column vector, ξ:

ξi = Biα = ln(Si) = ln(S0)− bi ·D (1.43)

ξi = −bxxiDxx − byyiDyy − bzziDzz − 2bxyiDxy − 2bxziDxz − 2byziDyz + ln(S0)

ξ = Bα =


−bxx1Dxx − byy1Dyy − bzz1Dzz − 2bxy1Dxy

− 2bxz1Dxz − 2byz1Dyz + ln(S0)

...

−bxxNDxx − byyNDyy − bzzNDzz − 2bxyNDxy

− 2bxzNDxz − 2byzNDyz + ln(S0)

 (1.44)

The noisy observed data for each acquisition is represented as an Nx1 column vector,

x, and is expressed with Eq. 1.44 and a noise vector, η, as follows in Eq. 1.46:

x =


ln(S1)
ln(S2)

...
ln(SN)

 (1.45)

x = Bα+ η = ξ + η (1.46)
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If M = 6 (where M is the number of measurements whose b > 0), the exact solution

for the diffusion tensor values iw as followSe(where η = 0 since it’s not possible to

distinguish η from α):

x = Bα (1.47)

(B−1B)α = α = B−1x (1.48)

When M > 6, the pseudoinverse of B, Bψ, is calculated for an unweighted-linear

least-squares fit with the B matrix.

(BTB)−1BTBα = (BTB)−1BTx (1.49)

(BTB)−1BT = Bψ (1.50)

The pseudoinverse of B can also be found via singular value decomposition. In the

unweighted-linear least-squares fit with the B (or H) matrix, it is assumed that all

data points are equally accurate. This assumption is true for the original signal

intensities but does not hold for the logarithms of signal intensities. Therefore, a

weighted-linear least-squares fit with the B matrix is needed to account for the ex-

pected variance in each measurement and correct the distortion introduced by the

logarithm transformation of signal intensities. Thus, more weight will be given to the

ln(Si) of higher Si values. The equation for the weighted-linear least-squares fit of

the B matrix is:

α = (BTΣ−1B)−1(BTΣ−1)x (1.51)

where Σ−1 is a diagonal NxN matrix whose elements are the squared signal value
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divided by its variance and (BTΣ−1B) is the covariance matrix:

Σ−1 = diag

(
S2
i

σ2
i

)
=


S2
1

σ2
1
· · · 0

...
. . .

...

0 · · · S2
N

σ2
N

 (1.52)

The variance for each gradient direction and b = 0 image can be modified to account

for varying amounts of signal averaging. The Si values are usually the observed noisy

values. An unweighted-linear least-squares fit results when Σ−1 is replaced with an

identify matrix [62, 63].

1.3.3.1.4 Eigenvectors and eigenvalues

The diffusion tensor is then used to calculate eigenvectors and eigenvalues

that describe its diffusion properties. Eigenvectors and eigenvalues are related by

the property that the product of the diffusion tensor and eigenvector is equal to the

product of the eigenvalue and the same eigenvector.

Dεi = λiεi = λiIεi,where i = 1, 2, 3 (1.53)

Eq. 1.53 is used to calculate eigenvalues and eigenvectors by first subtracting λiIεi,

from each side to form a set of homogeneous equation (shown in matrix notation in

Eq. 1.55:

(D− λiI)εi = 0 (1.54)Dxx − λi Dxy Dxz

Dxy Dyy − λi Dyz

Dxz Dyz Dzz − λi

εixεiy
εiz

 =

0
0
0

 (1.55)

The determinant of Eq. 1.54 is set to zero (Eq. 1.56) to form a 3D cubic equation

(Eq. 1.57, shown in terms of rotational invariants, Ii) then solving for the sorted
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eigenvalues (Eqs. 1.58 through 1.60; λ1 > λ2 > λ3) [66, 71]:

det(D− λiI) = 0 (1.56)

λ3 − I1λ
2 + I2λ− I3 = 0 (1.57)

I1 = λ1 + λ2 + λ3 = Dxx +Dyy +Dzz

I2 = λ1λ2 + λ2λ3 + λ3λ1 = DxxDyy +DyyDzz +DzzDxx − (D2
xy +D2

xz +D2
yz)

I3 = λ1λ2λ3 = DxxDyyDzz + 2DxyDxzDyz − (DzzD
2
xy +DyyD

2
xz +DxxD

2
yz)

λ1 = I1/3 + 2v1/2cos(φ) (1.58)

λ2 = I1/3− 2v1/2cos(π/3 + φ) (1.59)

λ3 = I1/3− 2v1/2cos(π/3− φ) = I1 − λ1 − λ2 (1.60)

where:

v = (I1/3)2 − I2/3 = Dan ·Dan/6

Dan ·Dan = 6(I1/3)2 − 2I2

s = (I1/3)3 − I1I2/6 + I3/2

φ = arccos[s/v3/2]/3

The eigenvector/eigenvalue relationship property is then applied to each eigenvalue

to determine any two of the three ratios: εiy/εix, εiz/εiy, and εix/εiz. The diagonal

elements of the D− λiI matrix in Eq. 1.55 are redefined as:

Ai = Dxx − λi

Bi = Dyy − λi
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Ci = Dzz − λi

Eigenvector element ratios are used to solve for the eigenvector elements to form at

least two individual eigenvectors, since the third can be calculated from the first two:

ε̂i = εi/
√
εTi εi = εi/

√
ε2
ix + ε2

iy + ε2
iz (1.61)

The eigenvector/eigenvalue relationship can be rewritten in matrix form as:

DE = EΛ (1.62)Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

ε1x ε2x ε3x

ε1y ε2y ε3y

ε1z ε2z ε3z

 =

ε1x ε2x ε3x

ε1y ε2y ε3y

ε1z ε2z ε3z

λ1 0 0
0 λ2 0
0 0 λ3

 (1.63)

where E is the eigenvector matrix that consists of the orthonormal eigenvectors as

column vectors and Λ is the eigenvalue matrix. If the diffusion tensor is rotated, its

eigenvalues will be the same but with differen eigenvectors (rotational invariance).

Since the eigenvectors are orthonormal, its inverse is equal to its transporse, leading

to the following formula to calculate Λ from D:

E−1 = ET (1.64)

ETEΛ = Λ = ETDE (1.65)

E used in Eq. 1.65 to rotate the reference frame to the eigenvector position so the

eigenvectors are aligned with the axes of the reference frame. The first eigenvec-

tor corresponds to λ1 and so forth. If two or more eigenvalues are equal, they are

degenerate and do not have unique eigenvector solutions [59, 61, 71, 72].
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1.3.3.2 Rotationally invariant scalars

Rotationally invariant scalars (RISs) are generated from the resulting eigen-

value decomposition to describe the diffusion anisotropy and magnitude [17, 18].

Four scalars derived from the tensor model of diffusion often used (referred to as DTI

scalars) include fractional anisotropy (FA), mean diffusivity (MD, units = mm2/

sec), axial diffusivity (AD, units = mm2/sec), and radial diffusivity (RD, units =

mm2/sec) (Table 1.1. FA reflects anisotropy of the diffusion tensor and is dimen-

sionless, ranging from 0 (isotropic diffusion) to 1 (high anisotropy) [18]. MD is the

average diffusion magnitude along three principal directions into which diffusion is

decomposed [18]. AD is the magnitude of diffusion parallel to the principal direc-

tion of diffusion, where changes correlate with axonal injury [73]. Radial diffusivity

(RD) is the magnitude of diffusion perpendicular to the principal direction of diffu-

sion, where increases correlate with incomplete myelination [74] and myelin injury

[73, 75]. Scalar measures have been used to examine normal-appearing WM that

contains abnormalities (i.e. multiple sclerosis) (e.g. [76]) and developmental studies

to characterize changes associated with aging (e.g. [77, 78].

1.3.3.3 Fiber tracking with the diffusion tensor model

Fiber tracking algorithms that use the diffusion tensor model can be split into

two types: deterministic (Section 1.3.3.3.1) and probabilistic. The general idea behind

deterministic fiber tracking is to use directional information provided by the diffusion

tensor with a starting or ”seed” point and termination criteria. Usually, the direc-
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Table 1.1: Summary of commonly used DTI scalars.

RIS Name Formula Interpretation

Fractional anisotropy FA =
√

3[(λ1−MD)2+(λ2−MD)2+(λ3−MD)2]

2(λ21+λ22+λ23)
Shape of diffusion

Mean diffusivity MD = λ1+λ2+λ3
3

Diffusion tensor
trace average;
size of diffusion

Radial diffusivity RD = λ2+λ3
2

Transverse
diffusion

Axial diffusivity AD = λ1 Longitudinal
diffusion

tional information used will be the principal eigenvector. The seed point is normally

placed in WM and serves as the start of the deterministic tractogram that propa-

gates along a trajectory determined by the directional information until termination.

Termination criteria depends on the predicted connectivity pattern. Deterministic

tractrography has shown that it is subject to variability due to the uncertainty in the

estimations of fiber orientation. In order to accommodate the uncertainty, probabilis-

tic tractrography replaces the discrete estimates of fiber orientation with probability

density functions (PDFs) of orientation. Since this thesis will only incorporate deter-

ministic tractography, this section (Section 1.3.3.3) will only summarize deterministic

algorithms and their limitations.
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1.3.3.3.1 Deterministic fiber tracking

1.3.3.3.1.1 Algorithms: streamline, tensor deflection

The simplest deterministic fiber tracking method is the streamline algorithm

that was originally developed to visualize flow patterns in fluid mechanics. To demon-

strate the capabilities of streamline tracking, an ideal example of the superior longi-

tudinal fasciculus derived via streamline tractography is shown here [1]: Streamline

Figure 1.2: An ideal example of the superior longitudinal fasciculus derived via
streamline tractography [1].

Source: M. Catani, R. J. Howard, S. Pajevic, and D. K. Jones, ”Virtual in Vivo
Interactive Dissection of White Matter Fasciculi in the Human Brain,” NeuroImage,
vol. 17, pp. 77-94, 2002.

tractography was first proposed by Basser [79] and is estimated by integrating the

following partial differential equation (Eq. 1.66):

∂r(τ)

∂τ
= vtraj(r(τ)) (1.66)
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where r(τ) is the path of the tractogram, ∂τ is the temporal step, and vtraj is the

vector field that defines the tangent to the local path direction. vtraj is usually

assigned to the principal eigenvector, e1, at each step [80, 81, 39]. There are several

ways to integrate Eq. 1.66. The simplest integration methods approximate Eq. 1.66

using a Taylor series expansion [39]:

r(τ1) ∼ r(τ0) + αe1(r(τ0)) (1.67)

Two methods that use the Taylor series expansion include FACT (fiber assignment

by continuous tracking) [81] (linear step-wise algorithm) or Euler integration [80]. α

is usually small relative to the curvature of the local tract such that r(τ1) (estimated

position) can be estimated at τ1 from r(τ0) (initial position). For the Euler method,

α is fixed and uses an interpolation of DTI data to estimate the local diffusion tensor

and principal eigenvector. In the FACT method, α can vary and uses the same e1

over the entire voxel.

To increase accuracy in the estimation of curved tracts, different methods for

interpolating the local e1 direction have been used. Interpolation methods include

interpolation of the raw DWI data [80], interpolation of the local diffusion tensors

(most common), and fitting a continuous description of the tensor field [82]. Higher

order integration methods with continuous derivatives, such as second or fourth order

Runge-Kutta, can also increase accuracy in the estimation of curved tracts [39].

To overcome directional ambiguity seen in less anisotropic tensors and areas

with crossing fibers, some fiber tracking algorithms with utilize the entire tensor. One

such algorithm is called tensor deflection or TEND that produces smoother results
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than streamline algorithms. TEND defines the trajectory vector as the product of

the diffusion tensor and the incoming vector direction [83]:

vtraj = D · vin (1.68)

TEND is designed to propagate through areas of low anisotropy and penalizes trajec-

tories with high curvature. The direction of the output trajectory will be the same

direction as the input trajectory when the tensor’s anisotropy is parallel or perpendic-

ular to the input trajectory. Therefore, for areas of isotropic diffusion, the estimated

direction of the trajectory will not change for TEND because the principal eigenvector

is not well-defined. TEND will also allow the fiber trajectory correctly when pass-

ing through the intersection of perpendicular crossing fibers. However, TEND may

not follow the fiber trajectory correctly through the intersection of non-perpendicular

crossing fibers [83]. A variation of TEND called tensorlines is weighted combination

of the principal eigenvector, tensor deflection, and an undeviated component [84, 83]:

Vout = fe1 + (1− f)((1− g)vin + gD · vin (1.69)

1.3.3.3.1.2 Seeding and stopping criteria

White matter tractography is initiated in areas in the image called seed loca-

tions. Size of seeds range anywhere from a single voxel to a region of voxel to the

entire brain. Multiple seeds can be place in a single voxel to sometimes generate

multiple tract solutions through heterogenous white matter regions. However, these

multiple solutions do not provide subvoxel resolution. Occasionally, regional seeds are

used to select specific pathways. Care must be exercised during selection because this
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process can lead to incomplete tract reconstructions. Whole-brain seeds are beneficial

for generating nearly all possible pathways for the DTI data but with considerable

redundancy [85].

Stopping criteria are used to terminate tracts once they have left the tract of

interest or has become unreliable. One common stopping criterion is to terminate a

tract once it has entered a region with low FA, whose threshold ranges from 0.1 to 0.2.

The FA threshold has a similar purpose in RIS studies where it is used to limit the

analysis to regions where the principal eigenvector is well-defined (WM). However, FA

thresholding can cause tracking to terminate prematurely in regions of crossing fibers

where the FA will be quite low. Another common stopping criterion is to terminate

when the trajectory is bending more than a set angle threshold. Curvature criteria

are based on the assumption that white matter trajectories are smooth and are used

to prevent unrealistically large angular deviations in reconstructions. However, some

pathways that are inherently highly curved, such as the Meyer’s loop in the optic

pathway and short subcortical U-fibers, suffer from inaccuracies due to curvature

limits [85].

1.3.3.3.1.3 Combining good ideas

To overcome limitations of deterministic fiber tracking, sometimes it is useful

to constrain the tract solutions. GTRACT allows the evaluation of multiple tract

solutions, resulting in the selection of the solution with the lowest energy. The solution

with the lowest energy is a function of the distance and the coherence of the local
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tract directions and the principal eigenvector. In addition, in regions with crossing

WM fibers, the tract solution will evaluate potential routes that are oblique to the

principal eigenvector [86].

Some algorithms achieve tractography by estimating the global tractography

solution that best fits the underlying DTI data instead of forward integration. One

such example is the Gibbs tracking algorithm that uses an iterative optimization

algorithm. The Gibbs tracking algorithm iterates through the following steps until

an optimal solution is found: estimation of a global tracking pattern, generation of

a corresponding synthetic DTI data set that is compared to the original DTI data,

and perturbs the tract connection pattern to minimize the difference between the

measured and synthetic data. The Gibbs tracking algorithm has shown to yield more

diffuse and lateral connection patterns than its traditional streamline counterparts,

at the cost of far more computational time [87].

1.3.3.4 Gradients for estimating anisotropic diffusion

In order to estimate diffusion in a single, symmetric 3x3 tensor, diffusion must

be measured in a minimum of six directions plus a baseline image (b = 0 image).

Therefore, in a diffusion-weighted imaging session, at least six gradient directions

with the following properties must be used: no two gradient vectors are parallel or

antiparallel (no positive or negative multiples of vectors), if three vectors are copla-

nar the remaining three vectors must not be coplanar, and no four vectors may be

coplanar. Violation of the above three rules will result in using an undetermined H
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(Eq. 1.29) or B (Eq. 1.42) matrix when computing the tensor [88].

There is a general consensus that the gradients should be as uniformly dis-

tributed as possible over a hemisphere of a sphere and then made negative (Fig-

ure 1.3). This will ensure uniform coverage of diffusion and minimize the effects of

crossterms between the diffusion gradients and imaging gradients in Dav (average of

three eigenvalues) and off-diagonal tensor elements [89]. Ideally, the measurements

should have a high signal-to-noise ratio. A poor estimation of the diffusion ten-

sor causes imprecise mean diffusivity values, over-estimation of anisotropic diffusion,

and inadequate characterization of the principal direction of diffusion. Icosahedral

schemes with 6, 101, 15, 16, 21, 25, or 31 directions provide well-spaced gradient

vectors [66]. For schemes with greater numbers of directions, it is preferred to use the

electrostatic repulsion model for selecting gradient vector coordinates. The electro-

static repulsion model falls into the category of numerically optimized schemes and is

based on the minimum total interaction (Columbic) energy of 2 encoding directions

(Ne) on the unit sphere. The charges experience vertex repulsion to prevent cluster-

ing and is defined by an expression analogous to total Coulombic energy (where ĝ is

a unit vector) [66, 38]:

E =
2Ne∑
i=1

2Ne∑
j>1

1

‖ĝi − ĝj‖
(1.70)

The ideal number of unique gradient directions for estimating the diffusion tensor

is still uncertain. There is an ongoing debate over the benefit of using a large num-

ber of different gradient orientations versus repeats of a smaller number of carefully

chosen orientations. It seems that if gradient directions are uniformly spaced, more
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(A) (B) 

Figure 1.3: Examples of uniform and non-uniform gradient vector distributions, where
the yellow dots represent terminal points of unit vectors on a unit sphere. (A) The
uniformly distributed vectors exhibit a hexagonal pattern on the surface of the sphere,
whereas the non-uniformly distributed vectors lack a consistent pattern on the sphere
surface. (B) The non-uniformly sampled diffusion may be suitable for estimation of
RISs but are often not suitable for fiber tracking or higher order tensor estimation
due to directional biasing.

gradient directions (as opposed to multiple acquisitions of few directions) provides

more constant variance in the calculated tensor parameters as the tensor is rotated,

but does not improve the average variances over all possible rotations. An emerging

rule of thumb is that at least 20 unique gradient directions should be acquired with a

b > 0 for a robust estimation of FA, 30 for tensor-orientation and mean diffusivity. If

fewer than 20 directions are collected, each acquisition should be repeated. Using 21

or more directions will yield a more uniform variance in calculated DTI parameters

over all possible tensor orientations and minimizes the effect of signals that approach

the noise level with very high anisotropy levels [90, 91, 92, 93, 94].
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1.3.3.5 Pulsed gradient spin-echo sequence alterations

One variation of the pulsed gradient spin-echo sequence that has improved the

acquisition of DWIs is the twice-refocused spin-echo (TRSE). Eddy current artifacts

are likely to show up in DWI data due to the nature of the imaging sequence. The

diffusion-weighting gradients provide unusually large eddy currents because they are

at higher intensities and longer durations than the typical MRI scan. If the eddy cur-

rent decays slow enough that a residual field remains in the image readout, the field

behaves like an additional spatial encoding field and results in geometric distortion

of the reconstructed images. The TRSE use two bipolar field gradients that produce

equal and opposite eddy currents. Thus, the shorter the time between on and off

transitions of the bipolar gradients, the greater the cancellation of the opposing eddy

currents. Adding extra RF refocusing pulses to the sequence will further split the gra-

dient pulses into shorter pulses. These shorter pulses produce specific exponentially

decaying residual fields that can be entirely canceled. Timing of the second refocusing

pulse is very flexible, thus leaving times between the excitation pulse and EPI read-

out available for diffusion-encoding pulsed gradients. The TRSE sequence also does

not compromise efficiency or effectiveness of the underlying original Stejskal-Tanner

spin-echo sequence [95].

Parallel imaging is often used because it reduces the echo time, preventing

susceptibility artifacts caused by air-tissue interfaces. Parallel imaging also drastically

reduces overall acquisition time by using multiple coils that detect only certain parts

of the field of view. The multiple coil arrangement allows several areas of the field of
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view to be imaged simultaneously without aliasing because each coil has no sensitivity

in the region where aliasing would occur. Imaging time is even further reduced because

each coil acquires only a fraction of the phase-encoding steps over its field of view

[96, 97].

1.3.3.6 Human subject considerations

The optimal imaging sequence will need to strike a balance between the desired

number of diffusion-weighted gradients and human subject comfort. More directions

translate into more time in the scanner. Practical limitations on scan time may be

shortened even further when the demographics of the human subjects are taken into

account. For example, it would be impractical to scan neonates or subjects with a

movement disorder such as Huntington’s disease for long periods of time.

1.3.3.7 Multiple imaging sites

In order to collect larger volumes of data from more subjects, it would be

practical to utilize multiple sites. PREDICT-HD is one example of a multi-center

collaboration, with 32 sites throughout the world collecting symptom, neuropsycho-

logical, imaging, and genetic data on HD subjects. Out of the 32 PREDICT-HD

sites, imaging data is being collected at 30 locations. Using multiple sites is a par-

ticularly useful strategy for recruiting large numbers of subjects with a rare genetic

disease like HD. Given the advantages of using multiple sites to collect imaging data,

information on reliability of results across sites and within subjects would be useful

to investigators. Sources of variability arise when different sites use different scanner
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vendors or even scanner software versions.

In regards to DWI data, degree of variability in DTI measures are usually re-

ported via coefficient of variation (CV) or intra-class correlation (ICC) values. When

comparing two 1.5T scanners from the same vendor, Pfefferbaum et al. showed that

scanner effect was statistically significant [98]. It must be noted that the two scanners

had different gradient systems but the same pulse sequence and gradient directions

were used. However, the significant scanner effect only resulted in a 2% difference

in FA values and a 1% difference in trace values [98]. When comparing two scanner

vendors (both 1.5T), Cercignani et al. reported CVs between 5.4 - 7.5% for FA and

1.7 - 5.6% for MD [99]. As for 3T scanner assessments, Vollmar et al. compared two

3T scanners from the same vendor and showed CVs of 1.1% for whole brain and 1.2%

for corpus callosum FA measures [100]. Vollmar et al. also produced reproducibil-

ity maps to demonstrate low variation (> 5%) in main WM structures and higher

variation (10 - 15%) in gray matter structures [100]. One of the most comprehensive

studies to date on multi-site DWI data was done by Pagani et al. [101] who used

both 1.5 and 3T field strengths on both Siemens and Philips scanners. Pagani et

al. found an intra-site CV of 5.1 - 5.7% in FA and 6.2 - 7.9% in MD in the corpus

callosum [101]. Through the comparison of different field strengths, Pagani et al.

demonstrated that magnetic field strengths and scanner vendor significantly affected

MD and AD measures [101].

As for reliability studies involving fiber tracking, investigators have yet to go

beyond intra-site. To assess reproducibility of FA values on the same scanner within a
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short time frame, Cheng et al. obtained two sets of fiber tracts between the cerebellum

and thalamus from scans collected 24 hours apart. A correlation value of 0.82 was

found between the tracts from the two time points [86]. Danielian et al. showed ICC

values of 0.8 for MD, FA, and RD up to one year apart in the corticospinal tract,

uncinate fasciculus, and corpus callosum derived via deterministic fiber tracking [102].

An example of a comprehensive intra-site fiber tracking reliability study was done by

Wang et al., where fiber tracking was used to define regions of interest in multiple

scans taken on the same subjects. 60 tractography measurements were made across

subjects, of which 43 had intersession CV values ≤ 10% and/or ICC values ≥ 0.70

for scans of 30 gradient directions repeated twice [103].

1.4 What is needed to study WM disease using DWI?

In order for clinical trials to use a tool such as DWI for monitoring disease

progression in WM disease, data collection must occur at multiple sites to obtain

sufficient sample sizes. Proper preparation for the scale of clinical trials for a WM

disease will require DWI data processing and analysis to adapt to accommodate multi-

site data. Therefore, a robust DWI data processing pipeline must be able to process

a wide range of data collected with different scanner software versions and models

from all major MRI scanner vendors. Since DWI data tends to be noisy due to the

violent nature of the scanning process, a robust DWI data processing pipeline needs to

incorporate an automated quality control step in addition to visual inspections. When

investigating new possible imaging biomarkers of disease progression, established non-
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imaging biomarkers must be used to select regions of interest for analysis and to

support new imaging findings. As established earlier, there are several types of DWI

analyses, each with a different level of complexity. When investigating a new region of

WM, the first analysis should always compare mean DTI scalars across that region of

WM from the WM disease population to healthy controls. If differences in diffusivity

in the new region of WM can be detected between the WM disease population and

healthy controls, a cross-sectional fiber tracking analysis of WM tracts connecting to

the region of interest (or perhaps the region of interest is a WM tract) is the next

step. Finally, the fiber tracking analysis needs to be done longitudinally to determine

if the diffusivity changes in the WM region of interest can be monitored over time.

The purpose of this thesis was to address the above requirements in preparing

for a large scale clinical trial using measurements derived from DWIs as biomarkers for

disease progression in a WM disease. Each requirement is addressed separately in the

following chapters. Chapter 2 describes several tools that solve mulit-site data issues,

such as DWI DICOM data compatibility and quality control, and their application to

DWI data from healthy controls collected at multiple sites in a DTI scalar reliability

analysis. Chapter 3 describes a mean DTI scalar analysis in focused regions of PFC

WM. Given that disease progression of the current WM disease model, prodromal

HD, is well-characterized by measures of cognitive performance, the WM of the PFC

was chosen for analysis based on its presumed role in cognitive functions. Chapter

4 addresses the requirements of a cross-sectional fiber tracking study: selection of

relevant WM tracts and finding a way to compare data from all participants along
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a tract. The forceps minor, anterior thalamic radiations, inferior fronto-occipital

fasciculi, and uncinate fasciculi were chosen because they all have extensions to the

PFC. These four tracts are also well-established in humans and the intention of using

them in this thesis was to avoid the uncertainty involved in analyzing a tract whose

existence is questionable. An atlas-based approach was used to create a space for

analysis. The TBSS algorithm was used on tracts to skeletonize them into an average

representation of the tract. However, unlike the traditional TBSS method, tracts were

first derived and then skeletonized individually to preserve individual morphologies.

Chapter 5 is the longitudinal extension of the cross-sectional fiber tracking analysis,

along with an exploration of parallel transport methods to investigate longitudinal

WM morphology changes.
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CHAPTER 2
TRAVELING HUMAN PHANTOM STUDY

2.1 Introduction

The overall goal of this study was to show that it is possible to reliably col-

lect DWI data from multiple participants at multiple sites and incorporate that data

into a single analysis. Reliability of DWI data across site and longitudinally across

time is extremely important to a rare disease study like PREDICT-HD that depends

upon the combination of results from multiple imaging sites. In order to investigate

issues that arise with the use of multiple imaging sites, DWI data from eight geo-

graphically distributed sites, including 2 distinct vendors (Siemens and Philips) and

4 different scanner software configurations were analyzed. The homogeneity prop-

erties of DWI analysis were investigated only on 3T data on five healthy subjects

(the Traveling Human Phantoms or THPs). Two imaging protocols with different

numbers of diffusion-sensitizing gradients that were vendor standards were applied to

assess intra-subject and inter-site variability. Diffusivity of white matter by lobe was

quantified with commonly-used RISs (FA, MD, RD, and AD).

2.2 Methods

2.2.1 Imaging

Five healthy volunteers were recruited and informed consent was obtained in

accordance with the Institutional Review Board at each imaging site. Each subject

was imaged at all of the eight sites within a 30-day period. All eight sites used 3T
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scanners, where five sites used a Siemens TIM Trio (gradient strength = 45mT/m,

slew rate = 200 T/m/s) and three sites used a Philips Achieva scanner (gradient

strength = 80 mT/m, slew rate = 200 T/m/s) with varying scanner software versions

(Table 2.1). All imaging data was transferred to the University of Iowa for processing

and analysis.

Table 2.1: Sites and scanners used in the Traveling Human Phantom study.

Site Vendor Model Software Gradient Head
Version Specifications Coil

University of Siemens TIM Trio B13 45mT/m
200T/m/s

12 Channel

Iowa

University of Siemens TIM Trio B15 45mT/m
200T/m/s

12 Channel

Minnesota

University of Siemens TIM Trio B15 45mT/m
200T/m/s

12 Channel

California, Irvine

Massachusetts Siemens TIM Trio B15 45mT/m
200T/m/s

12 Channel

General Hospital

Cleveland Clinic Siemens TIM Trio B15 45mT/m
200T/m/s

12 Channel

Johns Hopkins Philips Achieva 2.6.1 80mT/m
200T/m/s

8 Channel

Darthmouth Philips Achieva 2.5.3 80mT/m
200T/m/s

8 Channel

University of Philips Achieva 2.5.3 80mT/m
200T/m/s

8 channel

Washington
Source: V. A. Magnotta, J. T. Matsui, D. Liu, H. J. Johnson, J. D. Long, B. D.
Bolster, B. A. Mueller, K. O. Lim, S. Mori, K. Helmer, J. A. Turner, M. Lowe, E.
Ayl- ward, L. A. Flashman, G. Bonett, and J. S. Paulsen, Multi-Center Reliability of
Diffusion Tensor Imaging., Brain connectivity, 2012.

All DWI scans were vendor standard sequences without cardiac gating. Siemens

scanners used a double refocused spin-echo sequence, while Philips scanners used a



www.manaraa.com

43

Stejskal-Tanner sequence. Two types of scanning protocols were used: a vendor-

provided DWI gradient directions table (30 unique gradient directions and 1 baseline

image for Siemens scanners, 32 unique gradient directions and 1 baseline image for

Philips scanners) and a custom gradient encoding scheme designed using electrostatic

repulsion (71 unique gradient directions and 8 baseline images for both Siemens and

Philips scanners). A b-value of 1000 sec/mm2 was used for each gradient with dif-

fusion weighting. Four repetitions of the 30 or 32 direction sequence were acquired

with 70 slices per volume, while two repetitions of the 71 direction sequence were

acquired at 50 slices per volume. All DWI sequences had the same field of view (256

× 256 mm), matrix size (128 × 128), echo-time (TE = 92 ms), bandwidth (1565

Hz/pixel), and slice thickness/gap (2.0/0.0 mm). 70 slices per volume were collected

for the 30 or 32 direction sequences, while 50 slices per volume were collected for the

71 direction sequence. Siemens scanners used TR times of 10000 and 12000 ms for the

71 and 30 direction sequences, respectively. Philips scanners used TR times of 9750

and 7000 ms for the 71 and 32 direction sequences, respectively. Durations of scans

were approximately 6.5 and 15 minutes for the 30/32 and 71 direction sequences,

respectively.

Structural images were also acquired at each site using three-dimensional (3D)

T1- (MP-RAGE) and T2-weighted sequences. For this analysis, only anatomical

images acquired at the University of Iowa site were used. Therefore, only Siemens

scanner parameters for anatomical images will be reported. T1-weighted images were

collected in the coronal plane with the following parameters: TI = 900 ms, TE =



www.manaraa.com

44

2.85 ms, TR = 2300 ms, flip angle = 10o, NEX = 1, Bandwidth = 240 Hz/pixel,

FOV = 260 × 260 × 264 mm, Matrix = 256 × 256 × 240. T2-weighted images were

collected in the coronal plane with the following parameters: TE = 452 ms, TR =

4800 ms, Bandwidth = 590 Hz/pixel, Matrix = 256 × 186 × 120, FOV = 256 × 186

× 160 mm.

2.2.2 Structural image pre-processing

Structural image pre-processing was performed using a derivative of the fully-

automated BRAINS (Brain Research: Analysis of Image, Networks, and Systems)

AutoWorkup software package [104, 105, 106, 107]. T1- and T2-weighted images

collected at the University of Iowa were first anterior commissure (AC)-posterior

commissure (PC) aligned. Talairach parameters were defined in order to warp the

Talairach grid onto the subject data. Tissue classification [11] and skull stripping

using an artificial neural network [108] were performed. The following regions of

interest were defined based on the Talairach atlas (cerebrum, frontal lobe, temporal

lobe, parietal lobe, occipital lobe, and subcortical area) [109].

2.2.3 Conversion of DWI data from DICOM

The NRRD (nearly raw raster data) file format is becoming an increasingly

popular method of DWI data storage. The NRRD file is useful for DWI data because

of its ability to consistently store all the necessary metadata from DICOM files for

DWI analysis. DicomToNrrdConverter was the first program designed to convert DWI

DICOM data into the NRRD file format in a consistent manner [110]. DicomToNr-



www.manaraa.com

45

rdConverter was originally developed by Xiaodong Tao, PhD at the General Electric

Global Research Center to convert GE signal DWI DICOM data. When work began

on DWI data from the PREDICT-HD study that had many more DWI DICOM data

types aside from GE, it it was discovered that many DWI DICOM data sets were

indecipherable or incorrectly converted with the DicomToNrrdConverter. As a result,

in 2010, through the combined efforts of developers at the University of Iowa and the

University of North Carolina and Dr. Tao, DicomToNrrdConverter compatibility was

expanded to convert 15 varieties of DWI DICOM data, with GE, Siemens and Philips

vendor coverage (all are included in Table 2.2.) Eventually, those at the University of

Iowa convinced the NAMIC community that DWI DICOM compatibility will continue

to be a recurring problem because scanners will always be upgraded. Thus, in 2012,

with the assistance of Norman K. Williams and the NAMIC community, DicomToN-

rrdConverter was refactored into an extensible and easily modifiable program called

DWIConvert [111]. DWIConvert has been expanded to support the conversion of 18

known varieties of DWI DICOM data to NRRD and NIFTI file format (Table 2.2).

This number of compatible DICOM varieties is based on work performed on DWI

data from the PREDICT-HD study.

The most significant issue encountered when making DicomToNrrdConverter

compatible with DWI data from multiple vendors was simply extracting and inter-

preting correct metadata from DWI DICOM files created by different scanner vendors.

Types of metadata that are most important for calculating DTI data include: image

space, image size, slice thickness, space directions, space origin, measurement frame,
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Table 2.2: DWI DICOM data types that are able to be converted with DWIConvert
based on work performed on DWI data from the PREDICT-HD study.

Vendor Scanner Model Scanner Software Version
GE Signa HDxt 14 LX MR Software release:14.0 M5 0737.f
GE Signa HDxt 14 LX MR Software release:14.0 M5A 0828.b
GE Signa HDxt 15 LX MR Software release:15.0 M4 0910.a
GE Signa HDxt 15 LX MR Software release:15.0 M4A 0947.a
Philips Achieva 2.1.3.6
Philips Achieva 2.5.3.0
Philips Achieva 2.5.3.3
Philips Achieva 2.6.3.2
Philips Achieva 2.6.3.4
Philips Achieva 2.6.3.5
Philips Achieva 3.2.1.0
Philips Intera 10.6.2.6
Siemens Allegra syngo MR A30 4VA30A
Siemens TrioTim syngo MR B13 4VB13A
Siemens TrioTim syngo MR B15
Siemens TrioTim syngo MR B17
Siemens Verio syngo MR B15V
Siemens Verio syngo MR B17

b factor, diffusion-weighted gradient direction coordinates, and all the gradients in a

single 4D file. A DWI scan often has 2,000 to 53,000 file components to represent a

single 4D data set, depending on the scanner vendor used. Each type of metadata is

housed in DICOM files in its own element tag. The element tag contains a tag group

and element numbers in hexidecimal as given in the DICOM standard guidelines

[112].

In general, the use of public element tags to store metadata is encouraged

because public element tags should contain the same type of metadata across scanner

vendors and software versions. However, metadata in the public element tags become
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a problem when their contents are not accurate. A common difficulty in DICOM file

conversion is obtaining the correct diffusion-weighted gradient direction coordinates.

Accurate diffusion-weighted gradient direction coordinates are vital to reliable fiber

tracking and being able to compare DTI results collected from different scanners.

The coordinates are sometimes incorrect due to miscalculations from the b matrix

or input error at scan time. A quick solution for incorrect coordinates is to directly

calculate the diffusion gradient direction coordinates and b value from the b matrix

of the gradient. The b matrix values are often in a private element tag, an element

tag whose contents are not regulated by the DICOM standard guidelines, and thus

can vary from vendor to vendor. The following table (Table 2.3) contains a subset of

private element tags that identify important DWI scan information necessary for DTI

calculations, separated by scanner vendor. To add to the complexity of the situation,

the contents of private element tags are not published material (this was obtained

from the scanner vendors directory) and can even vary within a vendor’s scanner

software versions.

To overcome inaccuracies in public element tag gradient direction coordinates,

joint development from the University of Iowa and the University of North Carolina

has enhanced DicomToNrrdConverter to support the derivation of diffusion gradient

vector coordinates from each gradient’s b matrix private element tag. Currently, the

feature is only available for Siemens data. The six values in the b matrix tag represent

the six unique elements of the b matrix. Once the b matrix is reassembled from the

DICOM header, the trace of the b matrix is the b factor for the gradient. A singular
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Table 2.3: Private element tags (except for measurement frame) for DICOM data
produced by a subset of GE, Siemens, and Philips MRI scanners.

Element tag GE Siemens Siemens Philips
(Signa) (Trio Tim) (Verio) (Achieva)

B value 0043,1039 0029,1010 0029,1010 2001,1003
0019,10BB (x)

Gradient vector 0019,10BC (y) 0029,100E 0029,100E 2001,1004
coordinates 0019,10BD (z)

Mosaic size 0051,100B 0051,100B
parameters 0029,100A 0051,100B

Measurement 0020,0032 0020,0032 0020,0032
frame

B matrix 0019,100E
Note: Scanner vendor brand is listed at the head of each column with its scanner
version in parentheses.

value decomposition of the b is then performed to extract the diffusion gradient

direction coordinates, which is the first column of the 3x3 column orthogonal matrix.

The diffusion gradient direction vector will be a unit vector, which is an assumption

that allows the ability to calculate the b factor and gradient coordinates from the b

matrix [66].

2.2.4 Quality control of diffusion data: DTIPrep

This part of the study involved the testing and deployment of quality control

steps for DWI data that are possibly the most comprehensive available in the liter-

ature. These comprehensive quality control features were packaged in an automated

quality control tool called DTIPrep and has been jointly developed at the University

of Iowa and University of North Carolina. Adding DTIPrep as a pre-processing step

had two main purposes: 1) remove gradients containing artifacts common to DWI in
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an automated fashion to further ensure homogeneity of data, and 2) check scan proto-

col parameters to verify that data from different sites are comparable in an automated

fashion. The DTIPrep pipeline also terminated at any step if less than six diffusion

gradients remained or all of the baseline image were removed due to failing quality

standards [113]. This termination step prevented unusable scans from being included

in further analyses. Ultimately, the removal of artifacts could potentially improve

DWI analyses, particularly fiber tracking. The following sections (Sections 2.2.4.1

through 2.2.4.8) outline each step of DTIPrep’s pipeline.

2.2.4.1 Image information check

DTIPrep initiated its pipeline by verifying that the protocol used to collect

the diffusion-weighted data is consistent with its assigned template protocol (data

acquisition protocol). Image information was checked for mismatches in image size,

origin, and voxel spacing. The pipeline terminated if mismatches voxel spacing were

found while mismatches in image origin were reported [113].

2.2.4.2 Diffusion information check

Diffusion information was checked to detect scans with incorrect numbers of

diffusion gradients, diffusion gradient directions, and applied b factor. In the event

of a mismatch in diffusion gradient vector coordinates between the data acquisition

protocol and the scan of interest, a series of tolerance tests are executed to determine

whether these vectors were colinear. The criterion for colinearity is an angle difference

of less than one degree between the vectors in the data acquisition protocol and scan
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of interest. To maintain consistency in this check, all vectors from scan and protocol

were checked for colinearity in anatomical space. The need for this transformation

was realized when processing Philips data. Philips data is based on two separate sets

of axes: scanner and anatomical (patient) space (Figure 2.1). The diffusion gradient

vector and diffusion information is measured in anatomical space, while the diffusion

gradient vector is recorded in the DICOM header in scanner space. Fortunately, the

direction cosines matrix for transforming from anatomical to scanner space is provided

in the DICOM header as the measurement frame (non-identity matrix for Philips).

Therefore, to bring the vectors from scanner to anatomical space, the vectors are

multiplied by the inverses of their respective normalized measurement frames. The

same check is done for Siemens data but is much simpler since Siemens defines scanner

and anatomical space share the same axes (Figure 2.1) [113].

(A) (B) 

Figure 2.1: Illustration of the different axes and gradient vector representation in
different scanners. Axes for two scanner vendors are shown: Philips (A) and Siemens
(B).
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Figure 2.2 serves to illustrate the importance of ensuring that accurate gra-

dient vector coordinates are in each NRRD file with RGB-scaled color glyphs that

represent maximum eigenvector orientation. The left panel of Figure 2.2 contains

RGB-scaled color glyphs that correspond to the maximum eigenvector glyphs ori-

ented perpendicular to their expected orientations as the result of having incorrect

gradient coordinates in the NRRD file (emphasized by the yellow circle). Data con-

taining incorrect gradient coordinates could therefore adversely affect fiber tracking

by creating incorrect reconstructions of white matter. The right panel of Figure 2.2

contains RGB-scaled color glyphs that represent the maximum eigenvectors that are

properly oriented as the result of having gradient coordinates in the NRRD file that

are consistent with anatomical a-priori information.

2.2.4.3 Slice-wise intensity-related artifact checking

After the imaging protocol parameter checks, DTIPrep determined the pres-

ence of intensity-related artifacts (Figure 2.3 across all diffusion-sensitized gradients

using a slice-wise checking algorithm. The normalized correlation (NC) value was

computed on a pixel-by-pixel basis between two successive slices (A and B) and nor-

malized by the square root of the autocorrelation of the slices, where N was the

number of pixels considered:

NC(A,B) =

∑N
i=1(Ai ∗Bi)√∑N
i=1Ai ∗

∑N
i=1 Bi

(2.1)

It is assumed these correlation values will form a normal distribution across the

diffusion gradient directions. The user can define the number of standard deviations
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(A) (B) 

Figure 2.2: Proper and improper orientation of maximum eigenvector glyphs in DTI
data. (A) Green maximum eigenvector glyphs representing white matter traveling to
the cortex that are oriented perpendicular to their expected orientations. (B) Green
maximum eigenvector glyphs representing white matter traveling to the cortex that
are properly oriented.

used to define an outlier for the correlation values. In this study, 3.1 and 3.6 standard

deviations were used for the b = 0 and DWIs, respectively. NC values outside of the

user-defined number of standard deviations from the mean NC for a given gradient

represent slices containing intensity artifacts and their corresponding gradients are

removed. This slice-wise intensity check is used to remove gradient directions that

exhibit large changes in signal intensity that are not related to the diffusion encoding

gradients such as table vibrations and spike noise [113].
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(A) (B) 

(C) (D) 

Figure 2.3: Examples of intensity-related artifacts detected and removed by DTIPrep.
(A) Radio frequency interference. (B) Signal dropout in the checkerboard area. (C)
Badly recorded slice. (D) Venetian blind artifact.

Source: Z. Liu, Y. Wang, G. Gerig, S. Gouttard, R. Tao, T. Fletcher, and M. Styner,
Quality control of diffusion weighted images, Proceedings of SPIE, vol. 7628, pp.
76280J1, 2010.

2.2.4.4 Interlace-wise venetian blind artifact checking

Venetian blind artifacts result from subject motion between the interleaves of

a multi-pass acquisition. There are two steps in detecting venetian blind artifacts:

calculation of NC values between interleaving parts of each gradient and motion pa-

rameters. The NC here is used similarly to the NC used in the slice-wise check, where

a gradient whose NC is outside of the user-defined number of standard deviations

from the mean NC for the scan removed. In this study, 2.5 and 3.0 standard devia-

tions were used for b = 0 and DWIs, respectively. Motion parameters are obtained by

performing a rigid registration between the even and odd slices of the dataset for each
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diffusion-sensitizing gradient. The resulting estimates for translation and rotation are

compared to user-defined thresholds (2.0 mm translation and 0.5 degrees rotation in

this study), and gradients that exceed these thresholds are removed from the analysis

[113].

2.2.4.5 Baseline averaging

Motion between baseline scans is then estimated by DTIPrep and used to align

all the b = 0 images together. The resulting average baseline image is then used as

a reference for subsequent motion and eddy current correction for the DWIs. Motion

and eddy current artifacts are corrected by estimating an affine transform between

each of the DWIs and the average baseline image. There is an option of using a

mutual information metric to account for differences in signal intensity between the

images. In this study, a mutual information metric with a stop condition of less than

0.02 was used to align the b = 0 images. The gradient directions are also updated

based on the rotation component of the affine transformation [113, 114].

2.2.4.6 Eddy current, head motion artifacts checking

As mentioned in Section 1.3.3.5, eddy current artifacts are likely to show up

in DWI data due to the nature of the imaging sequence. Eddy current-induced

distortions can lead to misregistration between different DWIs and eventually to

error in the tensor image in all voxels. Thus, it is good practice to remove the eddy

current artifacts by coregistering all diffusion-weighted gradients to the first gradient

(usually a b = 0 image) before deriving the tensor image. In DTIPrep, a mutual
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information metric cost function is used, where the differences in signal intensity

drives the registration. A full affine registration is used to accommodate for eddy

current artifacts and take care of motion artifacts as well [113]. In this study, the

affine registration used a relaxation factor of 0.5 and a maximum step size of 0.1.

2.2.4.7 Gradient-wise checking

The final step of DTIPrep is meant to remove residual motion artifacts after

the eddy current and head motion corrections. This step allows the user to remove

gradients when the estimated translation or rotation exceeds a user-defined threshold

(2.0 mm translation and 0.5 degrees rotation in this study) relative to the (averaged)

baseline gradient [113].

2.2.4.8 Final output of DTIPrep

DTIPrep also performs a post-registration step that retrospectively computes

a rigid rotation to bring all gradients into anatomical space. The transformation

into anatomical space will account for the scan’s individual measurement frame and

transformations that occurred during the DTIPrep pipeline. A new NRRD file that

reflects the overall transformation and excludes all bad gradients (Figure 2.4) is the

final output of DTIPrep, in addition to a report file describing all exclusions [113].

2.2.5 Diffusion tensor image data processing

The two sets of DWI scans described in Section 2.2.7 were then analyzed with

the Guided Tensor Resored Anatomical Connectivity (GTRACT) software [86]. Dif-
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(A) 

(B) 

Figure 2.4: Illustration of how DTIPrep can improve DTI quality by removing gra-
dients containing artifacts. Color maps reflecting the degree and orientation of
anisotropy without quality control processing by DTIPrep (A) and with DTIPrep
(B).

Source: Z. Liu, Y. Wang, G. Gerig, S. Gouttard, R. Tao, T. Fletcher, and M. Styner,
Quality control of diffusion weighted images, Proceedings of SPIE, vol. 7628, pp.
76280J-1, 2010.

fusion tensor images were estimated from each DWI with and without the application

of a 3 x 3 x 3 voxel median filter to the b = 0 and diffusion-weighted volumes. The

following RIS images were computed from the tensor images: FA, MD, RD, and

AD. A B-Spline transform was derived via a two-step registration procedure between

the averaged baseline of each DWI scan and the corresponding subject’s T1-weighted

image to remove susceptibility artifacts from the EPI images [115]. The first step of

the registration was a six parameter rigid registration (3 translations and 3 rotations)

that aligned the averaged baseline to the T1-weighted image. The second step of the

registration was a non-linear B-Spline registration initialized with the rigid transform.
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The B-Spline transform was then used to resample the RIS images into the space of

each subject’s T1-weighted and tissue-classified image. White matter was defined

in an automated fashion in the RIS images through the intersection with the tissue

classified image’s definition of white matter and the threshold of the FA image at

0.1. Refining the white matter definition allowed the removal of regions that were

lost due to susceptibility artifacts. Regional RIS measures were obtained by left and

right hemisphere and both hemispheres for the entire cerebrum, frontal lobe, occipital

lobe, parietal lobe, temporal lobe, and subcortical area.

2.2.6 Manual review of imaging data

All imaging data was manually reviewed for artifacts, missing volumes, and

quality of registration with the anatomical image. Data with image artifacts or miss-

ing volumes were excluded from this study. Less than optimal registrations were

fixed with either a new manually generated rigid body transformation or using the

T2-weighted image as the fixed image instead. Gradients removed by DTIPrep were

also documented and evaluated for trends.

2.2.7 Experimental set-up

Once converted into NRRD file format, repeat acquisitions of DWI scans were

combined or concatenated together at different levels. Since the 30 or 32 direction

protocol was acquired four times per subject at each site, three different levels of

concatenated 30 or 32 direction scans were created: two (60 or 64 directions), three

(90 or 96 directions), and four (120 or 128 directions) scan repeats. The same con-
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catenation procedure was done for the 71 direction protocol, creating an additional

level of concatenated scans (142 directions). At this point, all individual and con-

catenated scans were subjected to two types of processing, with and without quality

control, creating two sets of DWI scans that were then propagated through the same

DTI processing. The first set of DWI scans was created by subjecting all individual

and concatenated scans to an extensive quality control procedure performed by a

program called DTIPrep (as described in Section 2.2.4), where artifacts commonly

seen in DWIs were removed. The second set of DWI scans was created by skipping

the use of DTIPrep and undergoing traditional basic DWI processing steps: baseline

averaging via a mutual information metric and correction for motion and eddy current

artifacts. DTIPrep included baseline averaging and motion and eddy current artifact

correction in the same manner, in addition to non-traditional DWI processing steps.

The two sets of resulting DWI scans (with and without quality control) were used to

estimate two separate sets of tensor and RIS images (Table 2.4). Analyzing RISs from

tensor images estimated from DWI scans in both individual and concatenated forms

allowed the assessment of the effects of signal-to-noise ratio (SNR) on the reliability

of results. Analyzing RISs from tensor images estimated from DWI scans with and

without quality control allowed the assessment of the effects of common DWI artifacts

on the reliability of results.
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Table 2.4: Types of DWI scans that were created per subject and site, and proceeded
to tensor estimation and DTI scalar analysis.

Directions Scan Directions in DTIPrep Baseline Eddy current and
per initial repeats concatenated used? averaging motion correction
scan scan outside outside DTIPrep?

DTIPrep?
30/32 1 30/32 No Yes Yes
30/32 1 30/32 Yes No No
30/32 2 60/64 No Yes Yes
30/32 2 60/64 Yes No No
30/32 3 90/96 No Yes Yes
30/32 3 90/96 Yes No No
30/32 4 120/128 No Yes Yes
30/32 4 120/128 Yes No No
71 1 71 No Yes Yes
71 1 71 Yes No No
71 2 142 No Yes Yes
71 2 142 Yes No No

2.2.8 Statistical analysis

Both within-subject reliability (whether RIS values can be reliably reproduced

in repeated scans) and between-site reliability (whether RIS values can be reliably

measured across site) of RIS values were evaluated. Since average scalar measures in

large regions of interest were used in this study, reliability was quantified using the

coefficient of variation (CV). Thus, decreased CV values indicated better reliability.

Covariates that were accounted for included scanner vendor (Siemens, Philips), site

(eight imaging sites), use of DTIPrep (yes, no), scanning protocol (high, low number

of gradient directions per scan), median spatial filtering (yes, no), and number of

concatenations (1, 2, 3, 4). Within-subject CV was calculated between repeated



www.manaraa.com

60

scans from each subject on the same scanner and scanning protocol within the same

site. Within-subject CVs were compared across RIS type, regions of interest, scanner

vendor, scanning protocol, and sites. Between-site CV was calculated between scans

from each subject across all eight sites. Between-site CVs were compared across RIS

type and regions of interest. To quantify central tendency and variability of the study

sample, mean and standard deviation (SD) of CVs were computed. Linear mixed-

effects models were utilized to evaluate the covariate effects. CVs were plotted with R

(http://cran.r-project.org/) and statistical analyses were carried out with SAS (Cary,

NC).

2.3 Results

2.3.1 Data exclusion

Five 30 or 32 direction scans from a single vendor (two from Dartmouth and

three from Johns Hopkins) were identified by DTIPrep as having too many corrupted

gradients for subsequent processing. These five scans were removed from all further

processing and analyses as they also contained significant subject motion artifacts.

As for the remaining DWI scans, DTIPrep eliminated 9.57% to 20.47% of 3D gradient

volumes per site, where a 3D volume was considered a baseline image or one with

diffusion-weighting (Table 2.5). On average, DTIPrep removed 12.76% of 3D gradient

volumes per site. Nearly all gradient removal occurred during the slice-wise checking

step. Only a small percentage of gradients were removed by the gradient-wise checking

step. Based on these results, it can be inferred that DTIPrep removes the majority
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of artifacts before baseline averaging. An analysis of the excluded gradients with

diffusion weighting showed that the most frequently removed gradients were those

with dominant axes in the z-direction (Figure 2.5).

Table 2.5: Number of gradients removed by DTIPrep during each artifact detection
step for each site.

Site Slice-wise Venetian Gradient-wise Total
Check Blind Check Check

University of Iowa 136 (10.15%) 1 (0.075%) 0 (0%) 137 (10.22%)
University of 167 (11.84%) 3 (0.21%) 0 (0%) 170 (12.06%)

Minnesota
University of 133 (9.43%) 2 (0.14%) 0 (0%) 170 (12.06%)

California, Irvine
Massachusetts 136 (9.65%) 1 (0.071%) 0 (0%) 137 (9.72%)

General Hospital
Cleveland Clinic 171 (12.13%) 1 (0.071%) 0 (0%) 172 (12.20%)
Johns Hopkins 143 (11.16%) 2 (0.16%) 3 (0.23%) 148 (11.55%)
Dartmouth 269 (20.47%) 0 (0%) 0 (0%) 269 (20.47%)
University of 222 (16.08%) 3 (0.22%) 0 (0%) 225 (16.30%)

Washington
Source: V. A. Magnotta, J. T. Matsui, D. Liu, H. J. Johnson, J. D. Long, B. D.
Bolster, B. A. Mueller, K. O. Lim, S. Mori, K. Helmer, J. A. Turner, M. Lowe, E.
Ayl- ward, L. A. Flashman, G. Bonett, and J. S. Paulsen, Multi-Center Reliability of
Diffusion Tensor Imaging., Brain connectivity, 2012.

2.3.2 Mean FA and MD values

Since mean RIS values for combined hemispheres were similar to those in the

left and right, only combined hemisphere results are presented. Mean FA values

ranged from 0.218 to 0.372 across regions with the use of median filtering, where the

ordering of FA from smallest to largest by region was follows: occipital lobe, temporal
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Figure 2.5: Percentages of gradients excluded by diffusion measured along the domi-
nant axis.

Source: V. A. Magnotta, J. T. Matsui, D. Liu, H. J. Johnson, J. D. Long, B. D.
Bolster, B. A. Mueller, K. O. Lim, S. Mori, K. Helmer, J. A. Turner, M. Lowe, E.
Ayl- ward, L. A. Flashman, G. Bonett, and J. S. Paulsen, Multi-Center Reliability of
Diffusion Tensor Imaging., Brain connectivity, 2012.

lobe, cerebrum, parietal lobe, frontal lobe, and subcortical region. When median

filtering was not used, FA values increased and ranged from 0.280 to 0.437 (Table 2.6).

However, the ordering of FA values across regions remained the same as when median

filtering was used. Mean FA values ranged from 0.294 to 0.309 across site with median

filtering and 0.346 to 0.374 without median filtering. The standard deviations for FA
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across site were approximately 0.04 for all sites (Table 2.7). Mean FA values for

Siemens scanners were slightly less than those from Philips scanners (Table 2.8).

Mean FA values computed from scans with 71 gradient directions were lower than

those computed from scans with 30 or 32 gradient directions. All differences in FA

were evaluated by a mixed-effects model analysis and deemed statistically significant.

Differences in FA appeared small to small standard errors. MD values were not

affected by the median filter, whereas the median filter increased RD and decreased

AD. Siemens scanners had slightly greater MD values than Philips. Standard errors

were small as well in MD, AD, and RD values. Therefore, all differences in MD, AD,

and RD were also statistically significant. MD values and their standard deviations

were similar between scanning protocols.

2.3.3 Within-subject reliability analysis

The within-subject reliability analysis (Figure 2.6, left panel) showed that CVs

were less than 1.5% across all RIS measures for all brain regions when median filtering

was used (Figure 2.6, right panel). Mean CVs were all less than 1% across all sites and

RIS measures, except for Johns Hopkins that had CVs for FA and AD greater than

1% (Table 2.9). When median filtering was not applied, all RIS measures from Johns

Hopkins and FA values from the University of Iowa and University of California,

Irvine were above 1%. The mean CV for the 71 gradient direction protocol (0.46%

with median filtering, 0.60% without) was slightly less than the mean CV for the

30/32 gradient direction protocol (0.56% with median filtering, 0.71% without). A
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Table 2.6: Mean and standard deviation of DTI scalars by region across all sites.

RIS Region Mean Standard Mean Standard
with deviation without deviation
median with median median without
filter filter median median filter

MD Cerebrum 0.767×10−3 1.874×10−5 0.773×10−3 1.86×10−5

Frontal lobe 0.766×10−3 1.876×10−5 0.772×10−3 1.82×10−5

Occipital lobe 0.767×10−3 2.984×10−5 0.767×10−3 2.58×10−5

Parietal lobe 0.774×10−3 2.630×10−5 0.776×10−3 2.77×10−5

Subcortical 0.773×10−3 2.113×10−5 0.773×10−3 2.19×10−5

Temporal lobe 0.771×10−3 2.059×10−5 0.785×10−3 1.59×10−5

RD Cerebrum 0.653×10−3 1.81×10−5 0.608×10−3 2.22×10−5

Frontal lobe 0.642×10−3 1.74×10−5 0.603×10−3 1.99×10−5

Occipital lobe 0.694×10−3 2.75×10−5 0.636×10−3 3.13×10−5

Parietal lobe 0.653×10−3 2.60×10−5 0.608×10−3 3.25×10−5

Subcortical 0.612×10−3 2.05×10−5 0.566×10−3 2.53×10−5

Temporal lobe 0.665×10−3 1.48×10−5 0.624×10−3 1.65×10−5

AD Cerebrum 1.00×10−3 2.27×10−5 1.07×10−3 2.27×10−5

Frontal lobe 1.02×10−3 2.43×10−5 1.08×10−3 2.56×10−5

Occipital lobe 0.925×10−3 2.66×10−5 0.984×10−3 2.50×10−5

Parietal lobe 1.02×10−3 3.01×10−5 1.08×10−3 3.16×10−5

Subcortical 1.10×10−3 2.97×10−5 1.16×10−3 2.99×10−5

Temporal region 1.01×10−3 2.42×10−5 1.08×10−3 2.56×10−5

FA Cerebrum 0.295 0.0078 0.349 0.015
Frontal lobe 0.309 0.0081 0.364 0.014
Occipital lobe 0.218 0.0116 0.279 0.020
Parietal lobe 0.305 0.0116 0.355 0.020
Subcortical 0.372 0.015 0.437 0.23
Temporal lobe 0.289 0.0086 0.345 0.016

Source: V. A. Magnotta, J. T. Matsui, D. Liu, H. J. Johnson, J. D. Long, B. D.
Bolster, B. A. Mueller, K. O. Lim, S. Mori, K. Helmer, J. A. Turner, M. Lowe, E.
Ayl- ward, L. A. Flashman, G. Bonett, and J. S. Paulsen, Multi-Center Reliability of
Diffusion Tensor Imaging., Brain connectivity, 2012.

mixed-effects model analysis showed that the number of gradient directions, use of

median filtering, and scanner vendor had a significant effect on within-subject CV.

However, the mixed-effects model also showed that DTIPrep did not have a significant
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effect on the within-subject CV.

Figure 2.6: Intra-site reliability analysis showing the mean CV. The top row show
CV by site for FA, with (A) and without (B) median filtering. The bottom row shows
the CV by region and scalar measure, with (C) and without (D) median filtering.

Source: V. A. Magnotta, J. T. Matsui, D. Liu, H. J. Johnson, J. D. Long, B. D.
Bolster, B. A. Mueller, K. O. Lim, S. Mori, K. Helmer, J. A. Turner, M. Lowe, E.
Ayl- ward, L. A. Flashman, G. Bonett, and J. S. Paulsen, Multi-Center Reliability of
Diffusion Tensor Imaging., Brain connectivity, 2012.
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2.3.4 Between-site reliability analysis

In comparison to the within-subject analysis, the between-site reliability anal-

ysis showed increased CVs (Figure 2.7). Mean CVs were less than 3% in all regions

except for FA in the occipital lobe where the CV was 3.2% (Figure 2.7, left panel).

Mean CVs were approximately 2% across all scalar measures (Figure 2.7, right panel).

The mean CV in the occipital lobe was higher than all other regions across all RIS

measures. Mean CV for the 71 gradient direction protocol (2.15%) was higher than

the mean CV for the 30/32 gradient direction protocol (1.78%). A mixed-effect model

analysis showed that protocol type, scanner vendor, use of median filtering, and con-

catenation had significant effects on between-site CVs, but DTIPrep did not. There

was an interaction effect between scanner and protocol type: for 71 gradient direction

protocols, Siemens had a lower CV than Philips. For the 30/32 gradient direction pro-

tocol, the interaction effect between scanner and protocol type was reversed: Siemens

had a higher CV than Philips.

2.4 Discussion

On average, DTIPrep removed 13.4% of the gradient directions available in

this study. As a result, tensor images were estimated using approximately 26 gradient

directions for 30 or 32 direction scans and 62 gradient directions for 71 direction scans.

Therefore, reliable tensor, tensor orientation, and mean diffusivity were possible since

each scan had a number of gradient directions close to the recommended 30 directions

[94]. Although the reliability of tensor estimation was not evaluated in this study,
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Figure 2.7: Inter-site reliability analysis showing the mean CV. The top row shows
the CV by brain region and scalar type with (A) and without (B) median filtering.
The bottom row shows the CV based on the number of concatenations and scalar
measure for the low-diffusion gradient protocol with (C) and without (D) median
filtering.

Source: V. A. Magnotta, J. T. Matsui, D. Liu, H. J. Johnson, J. D. Long, B. D.
Bolster, B. A. Mueller, K. O. Lim, S. Mori, K. Helmer, J. A. Turner, M. Lowe, E.
Ayl- ward, L. A. Flashman, G. Bonett, and J. S. Paulsen, Multi-Center Reliability of
Diffusion Tensor Imaging., Brain connectivity, 2012.

FA and MD measures had similar CV values of less than 1%, suggesting that MD

can be reliably estimated with 26 gradient directions. Although DTIPrep did not
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significantly improve results, it was able to identify gradient directions that were

deemed noisy during visual inspection because they contained artifacts. The image

processing steps leading up to RIS measurements in regions of interest (quantifying

RIS values in voxels classified as white matter by the tissue classified image and with

FA values above 0.1) may have also made the RIS measurements immune to certain

artifacts. Based on visual inspections, artifacts that would be present without the

use of DTIPrep tended to be located in gray matter regions (Figure 2.8). Since these

artifacts were in gray matter regions, they would be excluded from the analysis due to

the requirement that analyzable voxels had to classified as white matter. In addition,

five scans of DWI data were excluded from both with and without DTIPrep analyses

because they did not contain a sufficient number of gradient directions. Therefore,

FA values in this study could have been elevated due to the data inclusion rules.

DTIPrep removed gradient directions when diffusion was measured predomi-

nantly in the z-direction (direction of scanner bore) twice as many times as compared

to the other two axes. This z-direction gradient removal trend was quite consistent

across site and vendor. One site had an especially large percentage of gradients re-

moved that were applied along the z-axis (Figure 2.5). An unbalanced removal of

gradients along the three main axes (x, y, and z) may suggest a problem with the

gradient amplifier or significant table vibrations. In either case, DTIPrep could be

useful in identifying scanner hardware problems that may require service.

In this study, the use of a median filter significantly improved the reliabil-

ity of RIS measures. CV and FA values were approximately 20% and 15% smaller,
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Figure 2.8: FA artifact resulting from table vibrations. The increased FA appears
in gray matter regions above the corpus callosum.

Source: V. A. Magnotta, J. T. Matsui, D. Liu, H. J. Johnson, J. D. Long, B. D.
Bolster, B. A. Mueller, K. O. Lim, S. Mori, K. Helmer, J. A. Turner, M. Lowe, E.
Ayl- ward, L. A. Flashman, G. Bonett, and J. S. Paulsen, Multi-Center Reliability of
Diffusion Tensor Imaging., Brain connectivity, 2012.

respectively, with median filtering as compared to without median filtering. In ad-

dition, median filtering increased AD by approximately 3% and decreased RD by

approximately 6%, while MD remained constant.

When compared to a previous DTI reliability study by Pagani et al. [101],

the data in this study showed a similar level of reliability. Pagani et al. reported

an average CV across imaging sites of approximately 5% for all RIS across regions

studied [101]. This study found mean CVs for within subject of approximately 0.5%

and between sites of approximately 2%. The main difference between this study and

that done by Pagani et al. was that this study was restricted to 3T scanners while
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Pagani et al. examined reliability across different field strengths (1.5T and 3T) [101].

Given the difference between mean FA and MD measures across scanners, it

is likely that Siemens and Philips use slightly different formulas for determining the

gradient magnitude applied based on the b-value specified at the scanner console. The

different imaging sequences (dual-echo for Siemens, Stejskal-Tanner for Philips) may

also account for some of the variability in FA and MD measures. Participants also

informally reported more vibration from Siemens scanners in comparison to Philips

scanners. Other differences between scanners reported by participants included com-

fort of the head pad and how their heads were restrained inside the head coil. Thus,

varying levels of comfort provided by each scanner could also account for variability

in FA and MD measures due to subject motion.

The within subject variability found in this study was quite small with CVs

of approximately 0.5% across all scanners and regions evaluated. The amount of

variability found in this study was relatively small in comparison to the variation seen

in a previous study involving prodromal HD subjects. In the previous study, there was

a FA value change of approximately 0.1 across the five year probability of onset [36].

However, this study still contained several aspects that may have contributed to the

variability in the diffusion tensor estimates, such as diffusion encoding, susceptibility

artifacts, and image registration. Efforts were made to minimize the effects of noise

by using a median filter before tensor estimation on all DWI images with the hope of

increasing the SNR in the images while maintaining the white matter tracks. However,

an analysis that accounted for all sources of variability showed that the use of a median
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filter reduced FA (by 20%) and AD and increased RD values. In order to ensure

that intra-subject variability could be measured, subjects were not repositioned in the

scanner between scans. If subjects had been repositioned between scans, an intra-

subject variability greater than 0.5% would have been expected with an upper limit

of the inter-site CV. An extension of this study would be to estimate reliability in

white matter regions more specific than those used here or in specific fiber tracts.

To facilitate such investigations, the data from this study has been made public

(https://predict-hd.net/xnat/). Studies looking at RIS values in gray matter regions

could be another additional analysis to obtain valuable information on underlying

architecture.

2.5 Conclusion

In summary, this study shows that diffusion tensor RIS can be robustly esti-

mated within a site with very little variation (CV of approximately 0.5%) using stan-

dard diffusion encoding sequences (30 or 32 directions) provided by vendors. This

suggests that changes in white matter architecture could be evaluated longitudinally

in subjects scanned on the same scanner. It was found that four averages of a 30 or 32

direction gradient encoding scheme were needed to significantly improve reliability,

which would be approximately 15 additional minutes of scan time. When multiple

sites and vendors were included in the analysis, a four-fold increase in variability

was seen. A 3% difference in RIS measures between vendors was observed, which is

most likely due to varying methods of converting the entered b-value into gradient
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amplitude and diffusion encoding schemes (Stejskal-Tanner for Philips versus double

refocused spin-echo for Siemens) used by different vendors. Thus, the same scanner

should be used throughout a longitudinal study in order to minimize the number

of subjects required. Lastly, scanner software upgrades evaluated in this study are

not the only types of upgrades to expect during studies of extended duration. Hard-

ware upgrades, such as those in gradient coils, were not evaluated in this analysis.

Therefore, the reliability resulting from software upgrades will be smaller than the

measured inter-site variability measured within vendor but larger than the intra-site

reliability estimated in this study. Further work is needed to assess how hardware

changes impact reliability measures. However, the inter-site reliability estimated in

this study is expected to serve as an upper bound for the coefficient of variation.
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Table 2.7: Mean and standard deviation of DTI scalars across all anatomical re-
gions by site: Massachusetts General Hospital (MGH), University of California, Irvine
(UCI), Univeristy of Minnesota (UMN), University of Washington (UW).

RIS Region Mean Standard Mean Standard
with deviation without deviation
median with median median without
filter filter median median filter

MD Cleveland Clinic 0.791×10−3 2.15×10−5 0.795×10−3 2.19×10−5

Dartmouth 0.753×10−3 1.68×10−5 0.755×10−3 1.97×10−5

University of Iowa 0.779×10−3 1.76×10−5 0.782×10−3 1.71×10−5

Johns Hopkins 0.754×10−3 1.45×10−5 0.764×10−3 1.87×10−5

MGH 0.780×10−3 2.56×10−5 0.783×10−3 2.10×10−5

UCI 0.780×10−3 1.70×10−5 0.784×10−3 1.55×10−5

UMN 0.770×10−3 1.54×10−5 0.774×10−3 1.24×10−5

UW 0.759×10−3 1.68×10−5 0.762×10−3 1.92×10−5

RD Cleveland Clinic 0.672×10−3 2.76×10−5 0.630×10−3 2.56×10−5

Dartmouth 0.634×10−3 2.72×10−5 0.580×10−3 2.81×10−5

University of Iowa 0.659×10−3 2.95×10−5 0.617×10−3 2.71×10−5

Johns Hopkins 0.635×10−3 2.54×10−5 0.586×10−3 2.78×10−5

MGH 0.661×10−3 2.72×10−5 0.619×10−3 2.36×10−5

UCI 0.660×10−3 3.01×10−5 0.619×10−3 2.81×10−5

UMN 0.655×10−3 2.47×10−5 0.614×10−3 2.24×10−5

UW 0.641×10−3 2.60×10−5 0.587×10−5 2.58×10−5

AD Cleveland Clinic 1.03×10−3 5.52×10−5 1.10×10−3 5.57×10−5

Dartmouth 0.993×10−3 4.57×10−5 1.07×10−3 5.29×10−5

University of Iowa 1.02×10−3 5.03×10−5 1.11×10−3 5.06×10−5

Johns Hopkins 1.00×10−3 4.48×10−5 1.10×10−3 4.98×10−5

Massachusetts 1.03×10−3 5.17×10−5 1.08×10−3 5.20×10−5

UCI 1.03×10−3 4.78×10−5 1.09×10−3 4.66×10−5

UMN 1.01×10−3 5.01×10−5 1.07×10−3 4.94×10−5

UW 1.01×10−3 4.70×10−5 1.07×10−3 5.08×10−5

FA Cleveland Clinic 0.295 0.0403 0.348 0.0421
Dartmouth 0.304 0.0381 0.374 0.0439
University of Iowa 0.300 0.0437 0.353 0.0452
Johns Hopkins 0.309 0.0368 0.377 0.0403
MGH 0.297 0.0400 0.352 0.0403
UCI 0.301 0.0439 0.359 0.0449
UMN 0.294 0.0423 0.347 0.0435
UW 0.302 0.0373 0.370 0.0426

Source: V. A. Magnotta, J. T. Matsui, D. Liu, H. J. Johnson, J. D. Long, B. D.
Bolster, B. A. Mueller, K. O. Lim, S. Mori, K. Helmer, J. A. Turner, M. Lowe, E.
Ayl- ward, L. A. Flashman, G. Bonett, and J. S. Paulsen, Multi-Center Reliability of
Diffusion Tensor Imaging., Brain connectivity, 2012.
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Table 2.8: Mean and standard deviation of DTI scalars across all anatomical regions
by scanner vendor.

Type Manufacturer Mean Standard Mean Standard
with deviation without deviation
median with median median without
filter filter median median filter

MD Philips 0.755×10−3 1.63×10−5 0.760×10−3 1.96×10−5

Siemens 0.780×10−3 2.09×10−5 0.783×10−3 1.90×10−5

RD Philips 0.638×10−3 2.59×10−5 0.586×10−3 2.67×10−5

Siemens 0.697×10−3 2.99×10−5 0.613×10−3 3.00×10−5

AD Philips 1.00×10−3 4.59×10−5 1.08×10−3 5.09×10−5

Siemens 1.02×10−3 5.19×10−5 1.08×10−3 5.24×10−5

FA Philips 0.305 0.0375 0.374 0.0424
Siemens 0.297 0.0421 0.351 0.0433

Source: V. A. Magnotta, J. T. Matsui, D. Liu, H. J. Johnson, J. D. Long, B. D.
Bolster, B. A. Mueller, K. O. Lim, S. Mori, K. Helmer, J. A. Turner, M. Lowe, E.
Ayl- ward, L. A. Flashman, G. Bonett, and J. S. Paulsen, Multi-Center Reliability of
Diffusion Tensor Imaging., Brain connectivity, 2012.

Table 2.9: Mean and standard deviation of within-subject coefficient of variation by
site: Massachusetts General Hospital (MGH), University of California, Irvine (UCI),
Univeristy of Minnesota (UMN), University of Washington (UW).

Site Coefficient Standard Coefficient Standard
of variation deviation of variation deviation
with median with median without median without median
filtering filtering filtering filtering

Cleveland Clinic 0.528 0.826 0.632 0.869
Dartmouth 0.328 0.249 0.494 0.446
University of Iowa 0.554 0.681 0.673 0.779
Johns Hopkins 1.000 1.760 1.359 2.104
MGH 0.305 0.237 0.411 0.333
UCI 0.556 0.873 0.708 0.945
UMN 0.348 0.301 0.473 0.472
UW 0.297 0.210 0.372 0.281
Source: V. A. Magnotta, J. T. Matsui, D. Liu, H. J. Johnson, J. D. Long, B. D.
Bolster, B. A. Mueller, K. O. Lim, S. Mori, K. Helmer, J. A. Turner, M. Lowe, E.
Ayl- ward, L. A. Flashman, G. Bonett, and J. S. Paulsen, Multi-Center Reliability of
Diffusion Tensor Imaging., Brain connectivity, 2012.
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CHAPTER 3
CROSS-SECTIONAL SCALAR STUDY

3.1 Introduction

This study strives to build upon past prodromal HD studies on frontal lobe

white matter (WM) by examining WM diffusivity in sub-regions of the prefrontal

cortex (PFC) defined by FreeSurfer in 53 prodromal HD participants and 34 controls.

Prodromal HD individuals were separated into three CAG-Age Product (CAP) groups

(16 low, 22 medium, 15 high) that indexed baseline progression. It was hypothesized

that diffusivity differences would be seen in PFC WM regions among CAP groups

relative to controls. It was also hypothesized that the difference relative to controls

would be a function of CAP group with the high group showing the greatest difference.

3.2 Methods

3.2.1 Participants

This analysis used structural images, diffusion-weighted images, and clinical

data from the first time point of a larger longitudinal functional MRI study, Cog-

nitive and Functional Brain Changes in Preclinical Huntingtons Disease (HD-fMRI;

NS054893: P.I. J.S. Paulsen). This was a two-site collaboration whose goal is to

utilize neurobiological and clinical markers to understand the progression of HD be-

fore diagnosis and to provide candidate disease markers to assist future preventive

HD clinical trials. Consent was obtained in accordance with the Institutional Review

Board at each site. Controls were participants from HD families but who were free
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of the CAG-expansion (i.e., CAG ≤ 35). Thirty-four healthy controls (11 male/23

female, mean age 49.1, SD = 10.4) and 53 prodromal CAG-expanded individuals

were recruited from the HD Registries at the University of Iowa and the Cleveland

Clinic. Prodromal CAG-expanded individuals were stratified into low (n = 16; CAP

< 287.16), medium (n = 22; 287.16 < CAP < 367.12), and high (n = 15; CAP >

367.12) groups based on their CAG-Age Product or CAP designation, as previously

described [116]. CAP groups are used to reflect the individuals progression through

the disease process, from presymptomatic through manifest HD, based on CAG and

age. It is meant to encompass terms such as disease burden and genetic burden that

have been used in previous literature. The formula for CAP is as follows:

CAP = Age0x(CAG− 33.6600) (3.1)

where Age0 represents age of the participant at the time of scan for this study (i.e.,

baseline) [116].

3.2.2 Measures

Participants were evaluated by clinicians experienced in the administration of

the Unified Huntingtons Disease Rating Scale (UHDRS) and certified by the Hunt-

ington Study Group (HSG). Formal diagnosis of HD was based on the Diagnostic

Confidence Level rating of four indicating the examining clinician felt the participant

showed unequivocal presence of an otherwise unexplained extrapyramidal movement

disorder with > 99% confidence [117]. Participants with a rating of DCL = 4 were

excluded to restrict this particular analysis to prodromal HD subjects. The sum of
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all the individual motor ratings from the UHDRS (total motor impairment score) is

reported as well [117]. Several cognitive measures were assessed alongside the imaging

measures and included the Symbol Digit Modalities Test (SDMT), the Stroop Color

Word Test, and the Trail Making Test (TMT). The SDMT measures psychomotor

speed and working memory by counting the number of correct matches between num-

bers to their designated symbol based on a key [118]. The Stroop Color Word Test

measures processing speed and executive functions by counting the number of correct

responses in three conditions: color-naming (name colors), word-reading (read color

names), and interference (inhibition of dominant reading response while naming color)

[119]. The TMT measures psychomotor speed and executive function by recording

the time it takes participants to connect numbers alone (TMT Part A, TMTA) and

connect alternating numbers and letters (TMT Part B, TMTB) both in ascending

order [120]. A greater time required to complete the TMT results in a higher score,

which indicates worse performance or poorer function. A summary of participant

characteristics is provided in Table 3.1.

3.2.3 Imaging

Imaging data was collected at two large medical research universities (Univer-

sity of Iowa and Cleveland Clinic). Both sites used a Siemens 3T TIM Trio scanner.

Structural imaging consisted of T1- and T2-weighted images both collected in the

coronal plane. T1-weighted images had the following parameters: TI = 900 ms,

TE = 3.09 ms, TR = 2530 ms, flip angle = 10o, NEX = 1, bandwidth = 220
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Hz/pixel, FOV = 256 x 256 x 220 mm, matrix = 256 x 256 x 220. T2-weighted

images had the following range of parameters: TE ≈ 440 ms, TR = 4800 ms, band-

width = 590 Hz/pixel, FOV = 220 x 256 x 224 mm, matrix = 214 x 256 x 160

mm. A diffusion-weighted sequence (71 non-collinear diffusion-weighting gradients

with diffusion-weighting of b = 1000 sec/mm2 and eight b = 0 sec/mm2 acquisitions,

256 x 256 mm FOV , 128 x 128 matrix, 50 2 mm-thick axial slices with zero gap, TE

= 92 ms, TR = 7700 ms (CCF) or 8000 ms (Iowa), and bandwidth = 1562 Hz/pixel

(CCF) or 1565 Hz/pixel (Iowa)) was acquired three times. All scans were transferred

to The University of Iowa for processing and analysis.

3.2.4 Structural image pre-processing

Structural image pre-processing was performed using a derivative of the fully-

automated BRAINS (Brain Research: Analysis of Image, Networks, and Systems)

AutoWorkup software package [107]. T1- and T2-weighted images for each subject

were anterior commissure (AC)-posterior commissure (PC) aligned. The AC-PC-

aligned images were then bias-field corrected using an atlas-based classification al-

gorithm. The pre-processed T1-weighted images were used in FreeSurfer (version

5.1.0) image analysis suite (documented and freely available for download online at

http://surfer.nmr.mgh.harvard.edu/) for volumetric segmentation of the cortical WM

regions. An illustration of the WM labels used in this study is provided in Figure

3.1.
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3.2.5 Diffusion-weighted image pre-processing

Each DWI scan was visually inspected individually to identify artifacts. Re-

peat DWI scans from the same subject from a single scan session were concatenated

(resulting in 3x redundancy of each gradient directions) before quality control checking

with DTIPrep [113]. DTIPrep performs several quality assurance steps and removes

volumes within a scan that do not meet its minimal quality criteria. Individual steps

of the DTIPrep pipeline were described in Section 2.2.4. The final dataset contained

an averaged baseline image and only those diffusion-weighted images that passed all

quality assurance tests [113].

3.2.6 Imaging variables in regions of interest

The output files from DTIPrep were used to estimate the tensor images, and

subsequently the fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity

(AD), and radial diffusivity (RD) images were computed from the tensor images using

components of the GTRACT software [86]. A visual inspection of all FreeSurfer labels

revealed that voxels posterior to the caudate were often included in the segmentation

of both left and right medial orbitofrontal WM regions. To create a consistent regional

definition, the medial orbitofrontal WM segmentation for each subject was edited by

removing all voxels posterior to the centroid of the ipsilateral caudate. The FreeSurfer

WM labels and brain masks were both resampled into DWI space using a B-Spline

transformation from the T2-weighted image to the averaged b0 baseline image from

the output DTIPrep file and visual inspections of registration quality were performed.
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The resampled FreeSurfer WM labels were used to obtain measurements of volume

and mean rotationally invariant scalar measures or DTI scalars. The ratio of label

volume to intracranial volume will be referred to as the WM volume throughout the

remainder of this manuscript. Mean FA, MD, AD, and RD values were computed

in FreeSurfer WM labels intersected with the thresholded FA binary mask (subjects

FA image containing FA values above 0.1) using components of SimpleITK (http :

//www.itk.org/Wiki/ITK/Release4/SimpleITK).

3.2.7 Statistical analysis

Statistical analyses were performed using general linear models (GLM) with

PROC GLM in SAS 9.2. For each FreeSurfer defined PFC region, differences in WM

volume and mean FA, mean MD, mean AD, and mean RD among groups determined

by CAP designation were investigated using analysis of covariance models with age,

years of education, gender, and site of data collection as covariates. Partial Pear-

son correlations were computed between regional WM volume, mean FA, mean MD,

mean AD, and mean RD and SDMT, Stroop Word, Stroop Color, Stroop Interfer-

ence, TMTA, and TMTB scores for prodromal HD subjects only with age, years of

education, gender, and site of data collection as covariates. In the GLM and corre-

lation analyses, a false-discovery rate (FDR) correction was performed to adjust for

multiple comparisons across ROIs using the procedures of Benjamini and Hochberg

[121] as implemented in PROC MULTTEST. FDR correction was used for the GLM

omnibus test of any group difference. A criterion of q < 0.05 was used to elevate
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omnibus statistical significance, with q being the FDR-adjusted p-value. For each

significant result based on the q-value, unadjusted p-values were used to evaluate

pair-wise group differences. A criterion of p < 0.05 was used to evaluate pair-wise

statistical significance.

3.3 Results

3.3.1 GLM groups analysis

The results for the GLM group analysis are listed in Tables 2 through 6. In each

table, the omnibus results are presented in three columns for mean FA (Table 3.2),

MD (Table 3.3), RD (Table 3.3), AD (Table 3.5), and WM volume (Table 3.6). As the

tables show, differences among groups that remained significant after FDR correction

included those measuring diffusivity (Tables 3.3 and 3.4) as opposed to volume (Table

3.6). Model-based group means (adjusted for covariates) for regions whose differences

among groups that remained significant after FDR correction are plotted in Figure

3.1. Figure 3.1 illustrates that differences among groups that remained significant

after FDR correction were mainly in regions of the inferior and lateral frontal lobe.

As seen in Table 3.3, there were statistically significant differences in MD

among groups in the left rostral middle frontal (q = 0.033) and right lateral or-

bitofrontal (q = 0.033) regions. Figure CAP group, as shown by significantly higher

MD values in the left rostral middle frontal region for both medium (p < 0.01) and

high CAP (p < 0.005) groups and in the right lateral orbitofrontal region for the

high CAP (p < 0.005) group in comparison to controls. As seen in Table 3.3, the left
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rostral middle frontal (q = 0.022) and right lateral orbitofrontal (q = 0.022) regions

also had statistically significant differences in RD among groups, along with the left

lateral orbitofrontal (q = 0.022) and all inferior frontal lobe regions (left pars oper-

cularis, q = 0.025; left pars triangularis, q = 0.022; right pars opercularis, q = 0.012;

right pars orbitalis, q = 0.039; right pars triangularis, q = 0.035) bilaterally except

for the left pars orbitalis. RD also increased with progression. Most regions had sig-

nificantly higher RD values for both medium (p < 0.01 to 0.05) and high CAP (p <

0.0005 to 0.01) groups in comparison to controls, except for the left pars opercularis

(p < 0.005), right lateral orbitofrontal (p < 0.001), and right pars orbitalis (p < 0.01)

regions that had higher RD values for the high CAP group only (Figure 3.1).

3.3.2 Cognitive variable partial correlations

After the application of FDR correction to all correlations between cognitive

and imaging variables, TMTB was the only cognitive variable that showed significant

partial correlation with two imaging variables in several regions. Amongst the regions

that demonstrated significant differences in imaging variables among groups, the mean

FA in two regions (right pars opercularis and right pars triangularis) in addition to

the right medial orbitofrontal region negatively correlated with TMTB score (all q

= 0.037). TMTB score also positively correlated with mean RD in the right pars

triangularis region (q = 0.044) (Tables A.5 and A.5). Complete summaries on the

correlations between imaging variables and the SDMT (Tables A.1 and A.2), TMTA

(Tables A.3 and A.4), TMTB (Tables A.5 and A.5), Stroop Word (Tables A.7 and
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A.8), Stroop Color (Tables A.9 and A.9), and Stroop Interference (Tables A.11 and

A.12) can be found in Appendix A.5.1 in Tables A.1 through A.12.

3.4 Discussion

The main goal of this study was to build upon past prodromal HD studies

on the frontal lobe by examining focused regions of PFC WM in prodromal HD

individuals using four commonly used measures of diffusivity (FA, MD, RD, and AD)

and WM volume. Mean measures of diffusivity and WM volume for each region

were compared across four groups (controls and three prodromal HD groups) and

correlated with several measures of cognitive performance. In this study, much like the

differences in cognitive performance seen in prodromal HD subjects at varying stages

before diagnosis [122], statistically significant increases in MD and RD in CAP groups

relative to controls were seen in inferior and lateral PFC regions. In comparison to

controls, a gradient of effects was seen in MD and RD, where the smallest effect was

seen in the low group and the largest effect in the high group. Significant correlations

between TMTB score and mean fractional anisotropy (FA) and/or RD paralleled the

group differences in mean MD and/or RD in several right hemisphere regions. The

gradient effect of lower anisotropy with CAP group could be explained by larger axon

diameter or lower packing density of axons that both discourage anisotropic diffusion

[123]. Specifically, significant differences in RD in the presence of no findings in AD

has been seen in an animal study that attributed this effect to demyelination [74]. In

addition, changes in diffusivity that reflect a loss of directionality in diffusion seen in
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two other animal studies (lower FA, higher RD) [73, 75] were demonstrated in the

same regions of the right lateral PFC that showed group differences in MD and RD

and correlated with a poorer performance on one of the cognitive tests used in this

study (TMTB). In summary, this study detected changes in diffusivity for the first

time in a region that has not been closely examined in the context of prodromal HD.

The meanings of these changes in diffusivity were further supported by correlating

with scores on a cognitive test (TMTB) that has a documented ability to detect

cognitive deficits in prodromal HD subjects. The gradient of effects suggests DWI

can provide reliable markers of disease progression in the form of increasing diffusivity

changes in the lateral PFC of prodromal HD individuals. Therefore, the results of

this study suggest that mean RD in regions of the right lateral PFC could serve as a

reliable biomarker to monitor disease progression in the prodromal HD stage.

The lack of findings for FA and MD in this study emphasizes the importance

of investigating directional measures of diffusivity in addition to rotationally invariant

diffusivity measures. FA and MD are commonly used measures of diffusivity because

they summarize general shape and magnitude of diffusion, respectively, by accounting

for diffusion magnitudes along three orthogonal directions at once [18]. The three

orthogonal directions are numbered as eigenvectors based on the descending order of

their corresponding diffusion magnitudes (first, second, and third eigenvalues) [17,

18]. In comparison to other summary measures of diffusivity (e.g. volume ratio and

relative anisotropy), FA is less susceptible to noise and provides the highest signal-

to-noise ratio (SNR) [91]. However, when changes in diffusion are subtle and in one
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or two of the orthogonal directions, these changes may not be reflected in summary

measures that normalize or average across all diffusion magnitudes. It may be more

helpful to examine these subtle changes using directional measures of diffusivity to see

diffusion magnitudes perpendicular and parallel to the first eigenvector. For example,

Acosta-Cabronero and colleagues demonstrated increases in AD, RD, and MD that

were more highly significant and sensitive to white matter changes in early Alzheimers

patients than reductions in FA [124]. In addition, the increases in AD, RD, and MD

were located in areas where tract degeneration was expected to occur based on prior

gray matter lesion studies, further challenging the notion that reduced FA alone is

able to fully capture changes in axonal integrity in Alzheimers disease [124].

When using measures of directional diffusivity, it is common to see changes in

both RD and AD in a given region because the processes that cause changes in these

measures (axonal death and demyelination) often occur in close proximity [73]. As

mentioned earlier, AD describes diffusion along the largest eigenvector [18]. Animal

studies have demonstrated that a decrease in AD is associated with axonal injury

and degeneration because normal parallel diffusion along axons is being hindered by

dysfunctional tissue [73]. RD describes diffusion perpendicular to the first eigenvector.

In contrast to AD, an increase in RD is associated with demyelination since diffusion

perpendicular to the axon is increased when there is less myelination [73, 75].

In this study, only increases in RD were seen in the prodromal HD individuals.

It is important to remember that since RD is the mean of two eigenvalues it will be

less noisy than AD, a measure that consists of a single eigenvalue. Therefore, in this
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study RD may have been more sensitive to tissue changes and AD has yet to reach

significance. An increase in RD with no change in AD has been documented in a

very specific type of myelin pathology called dysmyelination [74]. Dysmyelination is

the incomplete myelination of functional axons, as opposed to demyelination that is

the complete loss of myelination [74]. Song et al. examined diffusivity changes in the

setting of dysmyelination by using Shiverer mice. Shiverer mice are homozygous for a

recessive autosomal mutation for myelin basic protein, causing incomplete myelination

in the central nervous system [125, 126, 127, 128]. Song et al. showed that major

WM tracts in Shiverer mice have increased RD but identical AD in comparison to

the same tracts in control mice [74]. At this point in time, it is not possible to

unambiguously interpret increased RD in the lateral PFC without AD changes in this

study as a dysmyelintation process in prodromal HD individuals without longitudinal

or histological data to pinpoint the exact process affecting diffusivity [19]. However,

it must be emphasized that this study demonstrated a consistent gradient effect of

increased RD without AD changes throughout the lateral PFC bilaterally.

The lack of WM volume findings in this study was initially surprising, given

that previous studies have shown decreases in WM volume in prodromal HD [16] and

correlations between morphological abnormalities and cognitive deficits in early HD

subjects (Beglinger et al., 2005). It must be noted that if abnormal WM volume

findings in the literature are specific to the frontal lobe (either prodromal or symp-

tomatic HD), they tend to be in the entire frontal lobe [15, 129, 16]. An aspect of this

study that could have prevented frontal lobe WM volume findings was that a precen-



www.manaraa.com

87

tral gyrus region was not included in any part of the analysis. Perhaps WM volume

abnormalities in prodromal HD individuals are specific to the precentral gyrus. It

was not possible to include the precentral gyrus because the DWI data used here did

not consistently include the most superior portions of the frontal and parietal lobes.

Although the FreeSurfer WM definition has been shown to produce similar mean FA

values in the same WM regions defined by other methods [130, 131] and variability

within regions are replicated across groups [132], it still may not be the true volume

of WM associated with the cortical region.

In this study, significant group differences relative to controls in MD and RD

were mostly located in the lateral PFC, specifically in the ventrolateral or lateral left

and right inferior regions. Traditionally, the left inferior frontal area is known to be in-

volved in language, where lesions to the posterior portion cause Brocas aphasia [133].

However, the lateral inferior regions are broadly implicated in a number of higher-

order executive processes [134]. Therefore, the significant correlations between FA,

RD, and TMTB in most of the same right inferior regions containing group differences

may further suggest a link between the lateral inferior regions and higher-order execu-

tive processes. Overall, the TMT is a cognitive measure that has a documented ability

to differentiate among prodromal HD individuals in the CAP groups considered in

this analysis [135]. Specifically, TMTB involves subjects connecting alternating let-

ters and numbers to test cognitive flexibility and working memory, where the score is

the time necessary to complete the task. Poor performance on the TMTB is reflected

in a longer completion time [135]. TMTB scores negatively correlating with FA and
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positively correlating with RD in this study can possibly be interpreted together as

prodromal HD individuals experiencing greater impairment in executive functioning,

processing speed, and working memory with disease progression due to a white matter

disease process that can be detected by measures of diffusivity [19].

As for the significant findings in the dorsolateral and orbitofrontal PFC re-

gions, these results may be explained by the dorsal-to-ventral progression cell death

in the striatum observed in HD [33] affecting components of corticostriatal loops [34].

Specifically, Lawrence and colleagues hypothesized that functions associated with the

dorsal PFC-striatal loop may be impaired before motor symptom onset, followed by

impairment of functions associated with the ventral loop as neuronal loss increases

with disease progression [33, 34]. Based on anatomical studies done by Alexander et

al. and Arikuni et al., the dorsal PFC striatal loop includes dorsolateral PFC pro-

jections to the central to dorsal caudate, while the ventral loop includes orbitofrontal

PFC projections to the ventromedial caudate [31, 32]. Therefore, the significant

findings in the dorsolateral (increased MD and RD in the left rostral middle frontal

region) and the orbitofrontal (increased MD and RD in the right lateral orbitofrontal

and increased RD in the left lateral orbitofrontal regions) PFC in this study may be

explained by the pattern of cell death in the striatum affecting components of the

corticostriatal loops as implied by changes in diffusivity [19].

The main limitation of this study was that WM regions of the PFC were only

explored with WM volume and a limited set of scalar diffusivity measures derived

from the tensor model. Another metric for detecting differences in diffusivity among
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tissue types in future studies of white matter integrity in Huntingtons Disease is

diffusional kurtosis imaging (DKI). Diffusional kurotosis values quantify diffusional

non-Gaussianity as a consequence of tissue structure creating barriers and compart-

ments [136]. Diffusional kurtosis values may provide greater sensitivity to differences

between largely isotropic tissues and have been used in ischemic stroke [137, 138],

aging [139], schizophrenia [140], and attention deficit disorder [141]. Analyzing WM

regions derived from WM fiber tracts that connected cortical gray matter to the stria-

tum instead of WM regions based on proximity to cortical gray matter would have

provided a means for specifically examining corticostriatal tracts. Additionally, using

methods more sophisticated than the tensor model, such as high angular resolution

diffusion imaging (HARDI) to resolve multiple fiber orientations in white matter con-

taining crossing fibers, would be important to examine in the future with the number

diffusion-weighted gradients per scan used in this study [142]. The additional infor-

mation on multiple fiber orientations per voxel could possibly make scalar diffusivity

measures more sensitive to changes in white matter and assist with more reliable fiber

tract reconstructions in future studies [142]. Another limitation of this study was the

incomplete coverage of superior frontal and parietal lobes in DWI scans mentioned

earlier that led to clipping in the superior frontal, caudal middle frontal, and rostral

middle frontal regions. The rostral middle frontal areas were the least affected and

perhaps that is why findings were strongest there. However, it is uncertain whether

the superior frontal and caudal middle frontal regions contain findings in this study

as these regions were visibly substantially clipped.
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Future directions include expanding upon these findings in the PFC in the

form of more complex analyses. The next step is to perform cross-sectional fiber

tracking to obtain representations of the PFC WM that can be analyzed for changes

along each WM region. In addition to WM in the PFC, it may also be useful to

examine WM extending to the PFC from the striatum and beyond to characterize

how HD affects corticostriatal loops in their entirety. Ultimately, the above analyses

will be expanded to characterize changes in individual subjects longitudinally.

3.5 Conclusion

The main goal of this study was to build upon past prodromal HD studies

on the frontal lobe by examining focused regions of PFC WM in three groups of

prodromal HD individuals stratified by baseline progression (low, medium, and high

groups) using four commonly used measures of diffusivity (FA, MD, RD, and AD)

and WM volume. In summary, this study was able to detect differences in diffusivity

based on baseline disease progression for the first time in the lateral PFC, a region

that has not been closely examined in the context of prodromal HD. The meaning

of these changes in diffusivity were further supported by correlating WM measures

with scores on a cognitive test that has a documented ability to detect cognitive

deficits in prodromal HD. Therefore, the results of this study suggest that mean RD

in regions of the right lateral PFC could serve as a reliable biomarker to monitor

disease progression in the prodromal HD stage in future longitudinal studies.
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Figure 3.1: PFC WM ROIs for DTI scalar analysis. (A) WM labels generated by
FreeSurfer on T1-weighted images shown in sagittal and axial views. Radiologic
convention is used for the axial view. (B) Significant CAP group differences in MD
(top) and RD (bottom) in comparison to controls. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p <
0.005, ∗∗∗∗p < 0.001, ∗∗∗∗∗p < 0.0005.

Source: J. T. Matsui, J. G. Vaidya, H. J. Johnson, V. A. Magnotta, J. D. Long,
J. A. Mills, M. J. Lowe, K. E. Sakaie, S. M. Rao, M. M. Smith, and J. S. Paulsen,
Diffusion weighted imaging of prefrontal cortex in prodromal huntingtons disease.,
Human Brain Mapping, 2013.
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Table 3.2: Summary of general linear model results for regional FA findings for DTI
scalar analysis of PFC white matter.

Region F value∗ Raw p-value FDR q-value
Left caudal middle frontal 1.106 0.352 0.463
Left frontal pole 1.350 0.264 0.416
Left lateral orbitofrontal 2.520 0.064 0.230
Left medial orbitofrontal 2.372 0.077 0.230
Left pars opercularis 1.309 0.277 0.416
Left pars orbitalis 1.451 0.234 0.416
Left pars triangularis 3.244 0.026 0.158
Left rostral middle frontal 1.840 0.147 0.369
Left superior frontal 1.490 0.224 0.416
Right caudal middle frontal 0.509 0.677 0.677
Right frontal pole 0.901 0.445 0.500
Right lateral orbitofrontal 1.748 0.164 0.369
Right medial orbitofrontal 1.085 0.360 0.463
Right pars opercularis 3.333 0.024 0.158
Right pars orbitalis 2.991 0.036 0.161
Right pars triangularis 4.447 0.006 0.110
Right rostral middle frontal 1.001 0.397 0.476
Right superior frontal 0.704 0.553 0.585
Source: J. T. Matsui, J. G. Vaidya, H. J. Johnson, V. A. Magnotta, J. D. Long,
J. A. Mills, M. J. Lowe, K. E. Sakaie, S. M. Rao, M. M. Smith, and J. S. Paulsen,
Diffusion weighted imaging of prefrontal cortex in prodromal huntingtons disease.,
Human Brain Mapping, 2013.

Note: ∗The F-test reported in the table represents the main effect of CAP
group from an analysis of covariance model that includes four groups (controls, low,
medium, and high CAP groups) and age, years of education, gender, and site as
covariates. df1 = 3 and df2 = 79 for all F-tests.
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Table 3.3: Summary of general linear model results for regional MD findings for DTI
scalar analysis of PFC white matter.

Region F value∗ Raw p-value FDR q-value
Left caudal middle frontal 2.370 0.077 0.126
Left frontal pole 0.598 0.618 0.655
Left lateral orbitofrontal 4.181 0.008 0.051
Left medial orbitofrontal 2.553 0.061 0.118
Left pars opercularis 2.911 0.040 0.089
Left pars orbitalis 1.560 0.206 0.265
Left pars triangularis 3.647 0.016 0.055
Left rostral middle frontal 4.883 0.004 0.033
Left superior frontal 1.312 0.276 0.332
Right caudal middle frontal 2.971 0.037 0.089
Right frontal pole 0.102 0.959 0.959
Right lateral orbitofrontal 4.949 0.003 0.033
Right medial orbitofrontal 1.255 0.296 0.333
Right pars opercularis 3.933 0.011 0.051
Right pars orbitalis 2.498 0.066 0.118
Right pars triangularis 1.926 0.132 0.198
Right rostral middle frontal 3.537 0.018 0.055
Right superior frontal 1.847 0.145 0.201
Source: J. T. Matsui, J. G. Vaidya, H. J. Johnson, V. A. Magnotta, J. D. Long,
J. A. Mills, M. J. Lowe, K. E. Sakaie, S. M. Rao, M. M. Smith, and J. S. Paulsen,
Diffusion weighted imaging of prefrontal cortex in prodromal huntingtons disease.,
Human Brain Mapping, 2013.

Note: ∗The F-test reported in the table represents the main effect of CAP
group from an analysis of covariance model that includes four groups (controls, low,
medium, and high CAP groups) and age, years of education, gender, and site as
covariates. df1 = 3 and df2 = 79 for all F-tests.
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Table 3.4: Summary of general linear model results for regional RD findings for DTI
scalar analysis of PFC white matter.

Region F value∗ Raw p-value FDR q-value
Left caudal middle frontal 2.889 0.041 0.067
Left frontal pole 0.436 0.728 0.771
Left lateral orbitofrontal 4.430 0.006 0.022
Left medial orbitofrontal 3.142 0.030 0.054
Left pars opercularis 4.186 0.008 0.025
Left pars orbitalis 2.024 0.117 0.176
Left pars triangularis 4.550 0.005 0.022
Left rostral middle frontal 4.657 0.005 0.022
Left superior frontal 1.793 0.155 0.186
Right caudal middle frontal 1.901 0.136 0.182
Right frontal pole 0.207 0.891 0.891
Right lateral orbitofrontal 5.091 0.003 0.022
Right medial orbitofrontal 1.162 0.330 0.371
Right pars opercularis 6.345 0.001 0.012
Right pars orbitalis 3.594 0.017 0.039
Right pars triangularis 3.788 0.014 0.035
Right rostral middle frontal 3.200 0.028 0.054
Right superior frontal 1.868 0.142 0.182
Source: J. T. Matsui, J. G. Vaidya, H. J. Johnson, V. A. Magnotta, J. D. Long,
J. A. Mills, M. J. Lowe, K. E. Sakaie, S. M. Rao, M. M. Smith, and J. S. Paulsen,
Diffusion weighted imaging of prefrontal cortex in prodromal huntingtons disease.,
Human Brain Mapping, 2013.

Note: ∗The F-test reported in the table represents the main effect of CAP
group from an analysis of covariance model that includes four groups (controls, low,
medium, and high CAP groups) and age, years of education, gender, and site as
covariates. df1 = 3 and df2 = 79 for all F-tests.
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Table 3.5: Summary of general linear model results for regional AD findings for DTI
scalar analysis of PFC white matter.

Region F value∗ Raw p-value FDR q-value
Left caudal middle frontal 1.323 0.273 0.639
Left frontal pole 0.650 0.585 0.676
Left lateral orbitofrontal 3.007 0.035 0.131
Left medial orbitofrontal 1.082 0.362 0.656
Left pars opercularis 0.862 0.465 0.676
Left pars orbitalis 0.657 0.581 0.676
Left pars triangularis 1.289 0.284 0.639
Left rostral middle frontal 3.368 0.023 0.131
Left superior frontal 0.625 0.601 0.676
Right caudal middle frontal 3.581 0.017 0.131
Right frontal pole 0.024 0.995 0.995
Right lateral orbitofrontal 2.982 0.036 0.131
Right medial orbitofrontal 1.076 0.364 0.656
Right pars opercularis 0.793 0.502 0.676
Right pars orbitalis 0.858 0.466 0.676
Right pars triangularis 0.386 0.763 0.808
Right rostral middle frontal 3.161 0.029 0.131
Right superior frontal 1.534 0.212 0.637
Source: J. T. Matsui, J. G. Vaidya, H. J. Johnson, V. A. Magnotta, J. D. Long,
J. A. Mills, M. J. Lowe, K. E. Sakaie, S. M. Rao, M. M. Smith, and J. S. Paulsen,
Diffusion weighted imaging of prefrontal cortex in prodromal huntingtons disease.,
Human Brain Mapping, 2013.

Note: ∗The F-test reported in the table represents the main effect of CAP
group from an analysis of covariance model that includes four groups (controls, low,
medium, and high CAP groups) and age, years of education, gender, and site as
covariates. df1 = 3 and df2 = 79 for all F-tests.
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Table 3.6: Summary of general linear model results for regional volume findings of
PFC white matter.

Region F value∗ Raw p-value FDR q-value
Left caudal middle frontal 0.247 0.863 0.971
Left frontal pole 0.321 0.810 0.971
Left lateral orbitofrontal 0.892 0.449 0.850
Left medial orbitofrontal 0.847 0.472 0.850
Left pars opercularis 2.654 0.054 0.488
Left pars orbitalis 0.996 0.399 0.850
Left pars triangularis 1.713 0.171 0.770
Left rostral middle frontal 0.470 0.704 0.917
Left superior frontal 0.490 0.690 0.917
Right caudal middle frontal 1.876 0.140 0.770
Right frontal pole 0.014 0.998 0.998
Right lateral orbitofrontal 0.491 0.690 0.917
Right medial orbitofrontal 0.457 0.713 0.917
Right pars opercularis 4.034 0.010 0.181
Right pars orbitalis 0.953 0.419 0.850
Right pars triangularis 1.002 0.397 0.850
Right rostral middle frontal 0.155 0.926 0.980
Right superior frontal 1.115 0.348 0.850
Source: J. T. Matsui, J. G. Vaidya, H. J. Johnson, V. A. Magnotta, J. D. Long,
J. A. Mills, M. J. Lowe, K. E. Sakaie, S. M. Rao, M. M. Smith, and J. S. Paulsen,
Diffusion weighted imaging of prefrontal cortex in prodromal huntingtons disease.,
Human Brain Mapping, 2013.

Note: ∗The F-test reported in the table represents the main effect of CAP
group from an analysis of covariance model that includes four groups (controls, low,
medium, and high CAP groups) and age, years of education, gender, and site as
covariates. df1 = 3 and df2 = 79 for all F-tests.



www.manaraa.com

98

CHAPTER 4
CROSS-SECTIONAL FIBER TRACKING STUDY

4.1 Introduction

This study strives to build upon prodromal HD diffusion tensor scalar studies

that have identified subregions of the prefrontal cortex (PFC) whose white matter

(WM) diffusivity are affected by HD disease progression by performing a tract-based

analysis on four well-established fiber tracts that terminate in the PFC. The four fiber

tracts include the forceps minor (FM), (left and right) anterior thalamic radiations

(ATRs), (left and right) inferior fronto-occipital fasciculi (IFOs), and (left and right)

uncinate fasciculi (UNCs). The FM is a large inter-hemispheric tract of fibers that

project from the genu of the corpus callosum [143] and has been shown to play a

role in language development [144]. The ATR runs through the anterior limb of the

internal capsule and connects the PFC to the mediodorsal thalamic nucleus [143],

which is believed to be involved with declarative memory [145, 146]. Specifically, the

mediodorsal nuclei are responsible for retrival of materials in memory [145, 146]. The

IFO connects to the orbitofrontal areas to the ventral occpital lobe, while coursing

through the external capsule [143, 147]. The IFO is believed to only exist in humans

[148] and may have a role in reading [149], attention [150], and visual processing

[151]. The UNC connects the orbitofrontal cortex to the anterior lobe [143, 147] and

is may be involved in episodic memory, language, and social emotional processing

[152]. It was hypothesized that diffusivity differences along each tract will be seen
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among groups of prodromal HD participants separated by degree of disease burden

relative to controls. It was also hypothesized that the differences in diffusivity relative

to controls would be a function of disease burden (determined by age and CAG

repeat length), where the group with the highest disease burden showing the greatest

difference. In addition, perhaps cognitive performance (measured by SDMT, Stroop

Word, Stroop Color, Stroop Interference, TMTA, and TMTB) will correlate with

changes in diffusivity.

4.2 Methods

4.2.1 Imaging and clinical data

Three separate diffusion tensor atlases were built for this cross-sectional study

from three sets of 3T imaging data collected at PREDICT-HD study sites. Two of the

three imaging data sets were associated with clinical data collected within six months

of scan acquisition. Imaging data consisted of the first 3T imaging session for each

PREDICT-HD study participant eligible for inclusion in this cross-sectional analysis.

Each data set will be described separately in Sections 4.2.1.1 through 4.2.1.4.

4.2.1.1 Single-participant, multi-site data

The single-participant, multi-site (SPMS) data set consisted of imaging data

for a single healthy participant from the Traveling Human Phantom (THP) study.

Therefore, the SPMS data set consisted of two DWI scans, one T1-weighted scan, and

one T2-weighted scans acquired at eight different sites (five Siemens and three Philips

3T MRI scanners) all on the same single subject (Section 2.2.1). Each DWI scan was
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acquired using the standard, vendor-provided DWI scanning protocol that was either

30 unique gradient directions and one baseline image (Siemens) or 32 unique gradient

directions and one baseline image (Philips). Structural images were acquired using

three-dimensional (3D) T1- (MP-RAGE) and T2-weighted sequences in the coronal

plane (Tables 4.1 and 4.2).

Table 4.1: Scanner parameters for T1-weighted images collected at the Traveling
Human Phantom (THP) study sites.

Site TI TE TR Flip NEX Bandwidth FOV Matrix
(ms) (ms) (ms) Angle (Hz/pixel) (mm) (mm)

CCF 900 2.87 2300 10o 1 240 256x256 256x256
DART 0 3.50 7.69 8o 1 241 224x224 220x218
IOWA 900 2.85 2300 10o 1 240 256x256 256x256
JHU 0 3.50 7.70 8o 1 241 224x224 220x218
MGH 900 2.87 2300 10o 1 240 256x256 256x256
UCI 900 2.85 2300 10o 1 240 256x256 256x256
UMN 900 2.87 2300 10o 1 240 256x256 256x256
UW 0 3.50 7.69 8o 1 241 224x224 220x218
Note: TI = Inversion time. TE = Echo time. TR = Repetition time. NEX = Number
of excitations. FOV = Field of view. CCF = Cleveland Clinic. DART = Dartmouth.
IOWA = University of Iowa. JHU = Johns Hopkins. MGH = Massachusetts General
Hospital. UCI = University of California, Irvine. UMN = University of Minnesota.
UW = University of Washington.

4.2.1.2 Multi-participant, single-site data

The multi-participant, single-site (MPSS) data set consisted of both clinical

and imaging data collected at the University of Iowa for 8 controls and 22 prodromal

CAG-expanded individuals. Prodromal CAG-expanded individuals were stratified
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Table 4.2: Scanner parameters for T2-weighted images collected at the Traveling
Human Phantom (THP) study sites.

Site TE TR Flip NEX Bandwidth FOV Matrix
(ms) (ms) Angle (Hz/pixel) (mm) (mm)

CCF 458 4800 120o 1 590 256x220 256x214
DART 183 2500 90o 1 523 224x224 220x218
IOWA 452 4800 150o 1 590 256x220 256x214
JHU 250 2500 90o 1 497 224x224 220x218
MGH 458 4800 120o 1 590 256x220 256x214
UCI 458 4800 120o 1 590 256x220 256x214
UMN 458 4800 120o 1 590 256x220 256x214
UW 250 2500 90o 1 497 224x224 220x218
Note: TE = Echo time. TR = Repetition time. NEX = Number of excitations. FOV
= Field of view. CCF = Cleveland Clinic. DART = Dartmouth. IOWA = University
of Iowa. JHU = Johns Hopkins. MGH = Massachusetts General Hospital. UCI =
University of California, Irvine. UMN = University of Minnesota. UW = University
of Washington.

into low (n = 5; CAP < 287.16), medium (n = 9; 287.16 < CAP < 367.12), and high

(n = 8; CAP > 367.12) groups based on their CAG-Age Product or CAP designation

[116]. Clinical data types used with the MPSS imaging data included age at imaging

session, years of education, gender, CAG-Age Product or CAP designation, UHDRS

Total Motor Score (sum of all items of the Motor Assessment scale), Symbol Digit

Modalities Test (SDMT), Stroop Color, Stoop Word, Stroop Interference, Trail Mak-

ing Test A (TMTA), and Trail Making Test B (TMTB). A summary of participant

characteristics in the MPSS data set are listed in Table 4.3, while descriptions of the

clinical data types can be found in Sections 3.2.1 and 3.2.2.

DWI data consisted of one to two repetitions of a scanning protocol with

30 gradient directions using a b-value of 1,000 sec/mm2 for gradients with diffu-
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sion weighting. Structural images were also acquired using three-dimensional (3D)

T1- (MP-RAGE) and T2-weighted sequences in the coronal plane. Parameters for

both DWI and structural image scanning protocols are listed in the extended multi-

participant, multi-site (EMPMS) data set section (Section 4.2.1.4) in Tables 4.6, 4.7,

and 4.8 because University of Iowa data was included in the EMPMS data set.

Table 4.3: Summary of demographic and clinical data for multi-participant, single-site
(MPSS) participants.

Cont (Mean; Low (Mean; Med (Mean; High (Mean;
(SD (N)) SD (N)) SD (N)) SD (N))

Age (years) 46.7; 10.2 (8) 30.8; 10.9 (5) 40.3; 8.8 (9) 46.5; 11.0 (8)
Educ (years) 15.4; 2.2 (8) 14.2; 1.6 (5) 14.4; 2.0 (9) 15.8; 2.4 (8)
Gender 2M/6F (8) 2M/3F (5) 5M/4F (9) 3M/5F (8)
Motor 4.8; 3.1 (8) 7.4; 6.5 (5) 7.1; 2.7 (9) 11.8; 8.1 (8)
SDMT 54.1; 5.9 (8) 53.8; 10.2 (5) 54.7; 3.3 (9) 46.9; 12.7 (8)
S Color 86.4; 8.4 (8) 84.0; 4.7 (5) 82.2; 6.8 (9) 73.0; 17.7 (8)
S Word 109.9; 13.7 (8) 106.2; 9.1 (5) 100.9; 10.5 (9) 89.4; 21.5 (8)
S Interference 47.3; 7.2 (8) 48.6; 12.8 (5) 54.8; 8.8 (9) 41.8; 7.1 (8)
TMTA 21.0; 2.0 (8) 19.0; 6.2 (5) 21.6; 9.1 (9) 28.4; 9.2 (8)
TMTB 59.9; 38.6 (8) 45.4; 16.1 (5) 46.9; 8.7 (9) 62.0; 22.4 (8)
Note: Cont = Controls. Med = Medium. Educ = Education. Motor = Sum of all
items of the UHDRS Motor Assessment scale. SDMT = Symbol Digit Modalities
Test. S = Stroop. TMTA = Trail Making Test A. TMTB = Trail Making Test B.

4.2.1.3 Multi-participant, multi-site data

The multi-participant, multi-site (MPMS) data set was much like the MPSS

data set except that data was collected from six PREDICT-HD study sites and in-

cluded 20 controls and 60 prodromal CAG-expanded individuals. Prodromal CAG-
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expanded individuals were again stratified into low (n = 20; CAP < 287.16), medium

(n = 20; 287.16 < CAP < 367.12), and high (n = 20; CAP > 367.12) groups based on

their CAG-Age Product or CAP designation [116]. A summary of participant char-

acteristics in the MPMS data set are listed in Table 4.4, while imaging parameters

are shown in the EMPMS data section (Section 4.2.1.4) in Tables 4.6 for DWIs and

Tables 4.7 and 4.8 for structural images.

Table 4.4: Summary of demographic and clinical data for multi-participant, multi-site
(MPMS) participants, including number of participants from each site in each group.

Cont (Mean; Low (Mean; Med (Mean; High (Mean;
SD (N)) SD (N)) SD (N)) SD (N))

Age (years) 42.0; 11.9 (20) 35.2; 8.3 (20) 42.8; 9.6 (20) 46.3; 13.5 (20)
Educ (years) 16.3; 1.8 (20) 14.8; 2.5 (20) 15.2; 2.5 (20) 15.7; 2.5 (20)
Gender 7M/13F (20) 5M/15F (20) 7M/13F (20) 6M/14F (20)
Motor 3.0; 2.6 (20) 2.4; 3.0 (20) 6.7; 4.6 (20) 8.2; 8.6 (20)
SDMT 55.0; 10.4 (20) 59.3; 9.8 (20) 50.1; 7.9 (20) 47.6; 9.6 (20)
S Color 87.9; 11.3 (20) 85.0; 8.3 (20) 79.4; 9.4 (20) 77.8; 12.9 (20)
S Word 107.6; 16.5 (20) 107.6; 11.4 (20) 99.5; 11.1 (20) 95.6; 18.2 (20)
S Interference 52.2; 8.4 (20) 50.9; 8.3 (20) 46.5; 8.5 (20) 41.9; 9.8 (20)
TMTA 21.1; 7.3 (20) 20.2; 6.5 (20) 24.2; 7.4 (20) 23.4; 6.1 (20)
TMTB 47.7; 24.9 (20) 51.3; 14.8 (20) 49.0; 14.4 (20) 61.9; 26.2 (20)
Site 024 (6) (7) (8) (7)
Site 027 (4) (2) (2) (3)
Site 048 (0) (2) (1) (0)
Site 054 (2) (3) (2) (3)
Site 073 (3) (3) (3) (3)
Site 120 (5) (3) (4) (4)
Note: Sites 024, 027, 073, and 120 have Siemens vendor scanners. Site 048 has a
Philips vendor scanner. Site 054 has a GE vendor scanner. Cont = Controls. Med
= Medium. Educ = Education. Motor = Sum of all items of the UHDRS Motor
Assessment scale. SDMT = Symbol Digit Modalities Test. S = Stroop. TMTA =
Trail Making Test A. TMTB = Trail Making Test B.



www.manaraa.com

104

4.2.1.4 Expanded multi-participant, multi-site data

The expanded multi-participant, multi-site (EMPMS) data set was an ex-

panded version of the MPMS data set. Data was collected from 15 PREDICT-HD

sites to include 65 controls and 146 prodromal CAG-expanded individuals. Prodromal

CAG-expanded individuals were again stratified into low (n = 46; CAP < 287.16),

medium (n = 54; 287.16 < CAP < 367.12), and high (n = 49; CAP > 367.12) groups

based on their CAG-Age Product or CAP designation [116]. A summary of partic-

ipant characteristics in the EMPMS data set are listed in Table 4.5, while imaging

parameters are shown in Tables 4.6 for DWIs and Tables 4.7 and 4.8 for structural

images.

4.2.2 Structural image pre-processing

All visual inspections and pre-processing of images were completed at the

University of Iowa Scalable Informatics, Neuroimaging, Analaysis, Processing, and

Software Engineering (SINAPSE) Laboratory while blinded to participant group sta-

tus. Corresponding T1- and T2-weighted images collected in the same scan session

were processed together with the BRAINSTools package [153], which is a derivative

of the fully-automated BRAINS (Brain Research: Analysis of Images, Networks, and

Systems) AutoWorkup suite [107] with symmetric image normalization (SyN) regis-

tration from ANTs (the Advanced Normalization Toolkit) [154, 155]. SyN registration

will be described in Section 4.2.3. Images from multiple modalities were processed

together to improve robustness of the procedure by using complimentary informa-
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Table 4.5: Summary of demographic and clinical data for expanded multi-participant,
multi-site (EMPMS) participants, including number of participants from each site in
each group.

Cont (Mean; Low (Mean; Med (Mean; High (Mean;
(SD (N)) SD (N)) (SD (N)) SD (N))

Age (years) 46.4; 11.4 (65) 34.4; 8.6 (43) 40.8; 9.9 (54) 45.3; 12.0 (49)
Educ (years) 15.4; 2.2 (65) 14.7; 2.5 (43) 15.0; 2.3 (54) 14.9; 2.9 (49)
Gender 22M/43F (65) 9M/34F (43) 16M/38F (54) 13M/36F (49)
Motor 3.8; 3.6 (65) 2.5; 3.5 (43) 6.1; 4.7 (54) 7.7; 7.1 (49)
SDMT 54.8; 10.4 (65) 60.0; 10.3 (43) 52.0; 9.6 (54) 48.1; 10.1 (49)
S Color 84.7; 12.4 (65) 87.1; 13.6 (43) 78.8; 11.6 (54) 74.9; 14.3 (49)
S Word 104.6; 15.1 (65) 106.9; 17.6 (43) 99.4; 16.6 (54) 98.1; 19.9 (49)
S Interference 49.6; 9.5 (65) 52.5; 11.7 (43) 48.0; 10.4 (54) 44.9; 11.9 (49)
TMTA 21.5; 6.3 (65) 20.6; 6.0 (43) 23.2; 7.7 (54) 25.1; 7.5 (49)
TMTB 51.4; 22.7 (65) 49.9; 16.9 (43) 56.3; 24.8 (54) 60.9; 23.6 (49)
Site 001 (0) (0) (2) (0)
Site 002 (1) (0) (0) (0)
Site 007 (0) (1) (0) (1)
Site 024 (28) (11) (18) (19)
Site 027 (6) (2) (3) (3)
Site 032 (0) (2) (3) (0)
Site 045 (5) (1) (4) (1)
Site 048 (0) (2) (1) (0)
Site 050 (2) (3) (4) (3)
Site 054 (2) (4) (5) (5)
Site 061 (1) (4) (3) (0)
Site 073 (4) (4) (4) (7)
Site 120 (11) (4) (6) (5)
Site 144 (5) (2) (0) (1)
Site 177 (0) (3) (1) (4)
Note: Sites 007, 024, 027, 032, 045, 050, 061, 073, 120, 144, and 177 have Siemens
vendor scanners. Sites 002 and 048 have Philips vendor scanners. Sites 001 and 054
have GE vendor scanners. Cont = Controls. Med = Medium. Educ = Education.
Motor = Sum of all items of the UHDRS Motor Assessment scale. SDMT = Symbol
Digit Modalities Test. S = Stroop. TMTA = Trail Making Test A. TMTB = Trail
Making Test B.
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tion, but it is possible to run BRAINSTools on a single T1-weighted image. Before

entering the BRAINSTools pipeline, all T1- and T2-weighted images were visually

inspected and given a quality rating ranging from zero (unusable) to ten (best qual-

ity). Images that received a quality rating lower than six were excluded from further

processing and analysis. The best-rated T1-weighted image within a scan session was

spatially normalized to the BRAINS T1-weighted template with a constellation-based

landmark detection algorithm (where the anterior and posterior commissures and the

mid-sagittal plane are a few of the most prominent landmarks) [156]. The remaining

T1- and T2-weighted images that passed visual inspection were then rigidly aligned

to the spatially normalized T1-weighted image. AC-PC-aligned images were bias-field

corrected using an atlas-based classification algorithm, resulting in 17 tissue probabil-

ity maps and average images of each modality resampled to a 1 mm x 1 mm x 1 mm

voxel lattice. Tissue probability maps were collectively treated as a rough brain mask.

Aberrant islands surrounding the brain and tissue classified as blood were removed to

ensure the brain mask only covered cerebral and cerebellar tissues. The edited brain

mask was then used to skull-strip the participant’s corresponding averaged bias-field

corrected T1- and T2-weighted images.

4.2.3 Diffusion-weighted image pre-processing

DTIPrep performed several quality assurance steps and removed volumes within

a scan that did not meet its minimal quality criteria. In addition, multiple baseline

images within a concatenation were averaged and all volumes with diffusion weighting
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were coregistered to the averaged baseline. If a participant received multiple DWI

scans in a single session, the repetitions were concatenated end to end and processed

by DTIPrep [113]. Details on the individual steps of the DTIPrep pipeline were pro-

vided in Section 2.2.4. The final dataset contained an averaged baseline image and

only those diffusion-weighted images that passed all quality assurance tests [113].

The output of DTIPrep was again visually inspected to ensure that the DWI scan

was indeed free of interlace artifact, dropout, and major susceptibility artifacts. DWI

scans that contained lobar cropping were excluded from further analysis.

The transformation from the averaged baseline image from a participant’s DWI

to the corresponding bias field corrected T2-weighted image was derived using the

symmetric image normalization (SyN) registration method [154] from the Advanced

Normalization Tools package [155]. The remainder of this section will consist of a

description the SyN algorithm developed by Avants et al. as it was an integral part

of deriving high quality transformations between the different imaging modalities in

subject space and from subject to atlas space in this study. The SyN algorithm is a

symmetric diffeomorphic optimizer that maximizes the cross-correlation between two

images in the space of the diffeomorphisms [154]. Given that the moving and fixed

images are elements in the diffeomorphic space, the output deformation field from the

SyN algorithm is a geodesic path (φ) or the shortest diffeomorphism from the moving

to fixed image (from I to J) in the discrete domain Ω [154]. A diffeomorphism (φ) is

a forward mapping (φ(x, 1)) of an image (I) into a new coordinate system within a
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period of time (t ∈ [0, 1]) and is expressed as a composition of the two [157]:

φI = I ◦ φ(x, t = 1) = I(φ(x, t = 1)) (4.1)

φ is parameterized by time (t), a spatial coordinate (x), and a velocity field (v) all

on domain Ω [157]. If t ∈ [0, 1], φ can be obtained by integrating the velocity fields

from t = 0 to t = 1, while the shortest distance or geodesic between images I and I

warped by φ(x, 1) can be expressed as the infimum over all possible paths between

φ(x, 0) and φ(x, 1) [157]:

D(φ(x, 0), φ(x, 1)) = inf
φ

∫ 1

0

||v(φ(x, t))||L dt (4.2)

In Eq. 4.2, L is the linear operator regularizing velocity (ensuring that the velocity

field is smooth) and || · ||L is the Sobolev norm with respect to linear operator L

that induces regularity on the velocity field [157]. One of the useful properties of

a diffeomorphism is its ability to be decomposed into parts that are also diffeomor-

phisms [157]. In SyN registration, φ is derived from two halves of φ where each half

is half of two separate geodesics (φ1 and φ2) both indexed by the image registration

optimization time (t ∈ [0, 1]) in opposite directions [154]. The ends of the geodesic

are a moving image (I) and a fixed image (J) that contribute equally to the path,

where φ maps homologous anatomy in both images [154]. Given that x is the identity

position of a point in moving image I and z is the identity position of a point in fixed

image J , the constraint that both images contribute equally to the deformation can

be expressed as equal distances from each image to the center of the geodesic [154]:

D(Id, φ1(x, 0.5)) = D(Id, φ2(x, 0.5)) (4.3)
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Therefore, the solution to the optimization problem is to find the variational energy

that splits φ1 and φ2 such that I and J contribute equally to the total φ [154]. The

forward and backward optimization problem is shown in Eq. 4.4 where integrating to

time t = 0.5 produces a symmetric normalization solution by minimizing with respect

to φ1 and φ2 [154].

Esym(I, J) = inf
φ1

inf
φ2

∫ 0.5

t=0

{
||v1(x, t)||2L + ||v2(x, t)||2L

}
dt

+

∫
Ω

|I(φ1(0.5))− J(φ2(0.5))|2dΩ

(4.4)

The distance constraint (Eq. 4.3) is expressed in the optimization problem as a

similarity measure between I and J halfway across the geodesic, which begins as

I(φ1(x, 1)) = J or |I(φ1(x, 1))− J | [154, 157]. The similarity measure can be written

in terms of both φ1 and φ2 as |I(φ1(x, t))− J(φ2(z, 1− t))|2 or |φ1(0.5)I − φ2(0.5)J |2

when t = 0.5 [154, 157]. In SyN registration, cross-correlation is used as the similarity

metric as it is more suitable for multi-modality registrations [154]. Thus, the variation

optimization problem using cross-correlation as the similarity metric is as follows,

where I and J are I and J with its local mean subtracted, respectively [154]:

Esym(I, J) = inf
φ1

inf
φ2

∫ 0.5

t=0

{
||v1(x, t)||2L + ||v2(x, t)||2L

}
dt

+

∫
Ω

CC(I, J,x, )dΩ

(4.5)

Taking the variation of Eq. 4.5 with respect to φ1 and φ2 both at time 0.5 will

provide the parts of the geodesic that parameterize the forward and inverse mapping

from image I to J (in this case, from the averaged baseline of the participant’s DWI

image to corresponding bias field corrected T2-weighted image) assuming that φ1 and

φ2 are true diffeomorphisms (one-to-one and on-to) [154]. The outputs of the SyN
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registration method are an affine transform and an invertible deformation field that

collectively make up the total transformation from DWI to structural image space.

4.2.4 Diffusion tensor image pre-processing

The inverse of the transformation from the averaged baseline image of a par-

ticipant’s DWI to the corresponding bias field corrected T2-weighted image derived

from SyN registration was then used to resample the edited brain mask from struc-

tural image space to DWI space. A diffusion tensor image (DTI) was estimated in the

original DWI space, using the resampled brain mask to limit the tensor estimation

area to non-zero voxels and a weighted least squares tensor estimation method [63].

The transformation from the averaged baseline image of a participant’s DWI

to the corresponding bias field T2-weighted image was then used to resample the

resulting DTI to structural image space. Maintaining directionality of DTI eigenvec-

tors during DTI resampling is crucial for the validity of analysis and is a challenging

task. Thus, a resampling tool called ResampleDTILogEuclidean that preserved the

directionality information corresponding to both moving and fixed images when re-

sampling DTIs to structural image space. ResampleDTILogEuclidean used both the

affine transform and deformation field outputs from the SyN registration in preser-

vation of principal direction (PPD) mode with linear interpolation [158, 159, 160].

ResampleDTILogEuclidean initially transformed the first and second eigenvectors (e1

and e2) of the moving DTI with a given transformation file to produce two new eigen-

vectors [158]. Then, the rotation matrix (R) that rotates the original first and second
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eigenvectors into normalized versions of the new eigenvectors (n1 and n2) was derived

[158]. R has to be recomputed for each tensor and thus preserves the principal direc-

tion up to the second eigenvector for varying shapes of diffusion tensors [158, 159, 160].

The PPD method of diffusion tensor reorientation is applicable to affine transforms

and can be extended to deformation or displacement fields. R can be computed for

a displacement field by modeling the transformation by the displacement field as a

local affine model where the transformation for each tensor is the sum of an identity

matrix and Jacobian of the displacement field [158]. An additional feature of the

ResampleDTILogEuclidean tool is that the tensors in the output resampled DTI are

positive symmetric semi-definite matrices to avoid negative eigenvalues (or negative

magnitudes of diffusion direction) because the resampling operation is computed in

the Log-Euclidean domain [161, 159].

4.2.5 Unbiased cross-sectional DTI template building

An unbiased template space based on T1-weighted images was determined for

each set of data in this study using the unbiased template building algorithm origi-

nally proposed by Avants et al. [162, 163]. The unbiased template building algorithm

by Avants et al. will be summarized in this section. First, T1-weighted images from

all participants in a data set were averaged (T10). Transformations between T10

and the T1-weighted image from each participant were then estimated using the SyN

registration algorithm as described in Section 4.2.3. Affine transformations and de-

formation fields from the SyN registration step were used to resample the original
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T1-weighted images into the T10 space, whose resampled outputs were averaged to

create a new T1-weighted average (T11). All affine transformations and deformation

fields were averaged to create an average affine transformation (T̄) and average defor-

mation field (D̄). T̄ and D̄ were then used to resample T11 into the final T1-weighted

template (T1final). Assuming that the moving images (T1-weighted images from all

participants in a data set) and fixed image (average of T1-weighted images from all

participants in a data set) are elements in a diffeomorphic space and the paths be-

tween them are geodesics, the transformations represent average forces that move all

input images to the mean shape configuration [162]. New affine transforms (T′) and

deformation fields (D′) were derived via SyN registration between each original T1-

weighted input and T1final. T′i and D′i derived from T1-weighted images were then

used to resample each participant’s DTI with the ResampleDTILogEuclidean tool

[159] that were already in the T1-weighted image space, as suggested by Tustison et

al. to minimize circularity bias of this study’s experimental design [164]. Resam-

pled DTIs were then averaged with a tool called dtiaverage [160] to form the final

DTI template (DTIfinal) that served as the unbiased DTI template for fiber tracking.

Each unbiased DTI template was visually inspected to ensure valid alignment with

its corresponding T1-weighted template and correct orientation of large fiber tracts

(i.e. inferior tracts were oriented anterior to posterior, while corticospinal tracts were

oriented superior to inferior).
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4.2.6 Fiber tracking on the unbiased DTI template

Full brain tractography was performed on each data set’s unbiased diffusion

tensor template using the streamline tractography module available in 3DSlicer called

TractographyLabelMapSeeding [165]. All unbiased diffusion tensor templates had

voxels sized at 1 x 1 x 1 mm3. The basic streamline tractography algorithm was

described in Section 1.3.3.3.1. A seed was placed in each 0.75 x 0.75 x 0.75 mm3 sub-

voxel whose linear measure was greater than or equal to 0.3. Criteria for terminating

a tract included exceeding a length of 800 mm, developing a radius of curvature less

than 0.7 degrees per millimeter, or encountering a voxel whose fractional anisotropy

was less than 0.1. An integration step length of 0.5 mm3 was used and tracts below

10 mm in length were excluded.

4.2.7 Fiber tract selection

Fiber tracts were selected manually with a graphical user interface tool called

TractographyDisplay, which is a module in the Slicer toolkit, that allowed positive and

negative inclusion of individual tracts with an adjustable selection box [166]. Several

WM tractography atlases and teaching resources were used for anatomical reference

[143, 167, 147, 168], as well as frequent consultations with a tractography expert.

The following major fiber tracts terminating in the PFC were selected for analysis:

uncinate fasciculus (UNC), forceps minor (FM), inferior fronto-occipital fasciculus

(IFO), and anterior thalamic radiations (ATR). Full descriptions and illustrations of

the selection of each fiber tract can be found in Appendix B, Section A.1.
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4.2.8 Processing of fiber tracts

A tract probability map (TPM) (whose values ranged from 0 to 1) was com-

puted for each fiber tract using the method described by Wasserman et al [169, 170]

to create a continuous function that could be sampled at any resolution. Each fiber

tract consisted of a tract of individual fiber trajectories that could each be modeled

as a blurred indicator function (where a three dimensional point on the trajectory

is equal to 1 and decays to 0 as the point moved further from the trajectory) or

Gaussian process. Individual fiber trajectories could be combined into a fiber tract

represented by another blurred indicator function. Since each point on the trajecto-

ries had a univariate Gaussian distribution, the mean and covariance of the Gaussian

distribution for the fiber tract indicator function could be computed, which was used

to compute the probability at each voxel in the TPM [169, 170].

Each TPM was then skeletonized in the space of its DTI atlas using the TBSS

skeletonization tool [171], which is available in the FMRIB’s (Analysis Group at

the Oxford Centre for Functional MRI of the Brain) Software Library (FSL, v5.0.4)

[172]. The skeleton of each tract was approximately a curved sheet to represent

the curved surface along the center of the tract. The skeletonization process begins

by searching for the local tract surface orientation at each voxel in the TPM. At

each voxel, the center of gravity based on probability values is computed in a 3x3x3

voxel neighborhood. The vector from the current voxel to the local center of gravity

pointed to the tract center, which was perpendicular to the local tract structure.

Each direction estimate was then replaced with the mode of the direction estimate
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in the 3x3x3 region. The probability value in each voxel was then compared to its

two neighboring voxels along the direction estimate and the voxel with a greater

probability was marked as lying on the skeleton [171].

DTI scalar values (FA, MD, AD, and RD) from each participant were then

projected to each tract’s skeletonized TPM. For each voxel on the TPM skeleton, the

DTI scalar map is searched along the direction perpendicular to the tract within an

area restricted by a distance map of the TPM skeleton to find the maximum DTI

scalar value. The maximum DTI scalar value is then assigned to the voxel on the

TPM skeleton [171, 170].

4.2.9 Statistical analysis

4.2.9.1 SPMS data: DTI scalar variability analysis

Two sets of percentages of coefficients of variation (CVs; ratio of the standard

deviation to the mean, multiplied by 100) were computed for each type of DTI scalar

(FA, MD, AD, and RD) and will be referred to as CVs. The first set of CVs was

computed for the average scalar value over the region masked by each fiber tract

across images collected from each site. The second set of CVs was computed for the

average scalar value over the region masked by the skeletonized TPM for each tract

across images collected from each site.

4.2.9.2 Mean DTI scalars: controls versus CAP groups

In order to detect differences in mean FA, mean MD, mean AD, and mean RD

along tract skeletons between controls and CAP group, a permutation tests program
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called randomise was used for the MPSS, MPMS, and EMPMS data sets. randomise

is part of FSL and allows for modelling and inference using a general linear model

(GLM). Permutation tests are a type of nonparametric test that provides a mechanism

for inference on statistic maps when the null distribution of the data is unknown.

Permutation tests are often performed at the voxel level in neuroimaging studies to

establish the actual distribution of the data and can be applied to common GLMs

[173]. Permutation tests require the observations to be exchangeable in order establish

the null hypothesis that the distributions of the populations in question have the

same shape or mean. Data labels are permuted where each permutation consists of a

unique relabeling of the data and is called a block. Each block produces a statistic (i.e.

difference in means between pairs of items in a block) that is part of a distribution of

values formed by the permutations. Under the null hypothesis, each block statistic

produced is equally likely. p-value is the proportion of statistic values that are greater

than or equal to the statistic produced by the properly labeled block. Therefore, the

null hypothesis is rejected when the p-value is less than a pre-determined α (i.e. 0.05)

[173]. When nuisance variables are included in the GLM, randomise will provide

an approximate inference because exchangeability of the observations is no longer

present. Therefore, randomise will estimate the nuisance signal first by fitting the

data to the nuisance effects alone and permuting the nuisance-only residuals. The

nuisance signal is then added to the data to create an approximate realization of

the data under the null hypothesis, followed by the computation of the test statistic

requested [174].
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randomise was used to detect differences in mean FA, mean MD, mean AD,

and mean RD along tract skeletons between controls and CAP groups using analysis

of covariance GLM models with age, years of education, gender, and site of data col-

lection as covariates via unpaired two-sample t-tests for MPSS, MPMS, and EMPMS

data sets. Twenty-thousand permutations were used for MPSS and MPMS data sets,

while 50,000 was used for the EMPMS data set. An additional experiment comparing

mean RD in the right IFO between the lower third of the controls in the EMPMS

data set ranked by age to the upper third was performed using years of education,

gender, and site of data collection as covariates. The additional age experiment was

performed to see if randomise was able to detect mean RD differences in groups of

different ages, as RD is known to increase with age (i.e. [175]). Instructions for

implementation of the GLM in randomise can be found in Section A.2.

The following approaches were used to perform the t-tests, each using the

same GLM: voxel-based thresholding, cluster-based thresholding, and threshold-free

cluster enhancement (TFCE). All approaches were used on the MPSS and MPMS

data sets to compute t-tests in order to select the method that extracted the most

meaningful results from the EMPMS data set. TFCE was the only method used to

perform t-tests on the EMPMS data set.

Voxel-based thresholding was used to determine voxelwise differences in mean

DTI scalars between controls and CAP groups by computing the t-statistic at each

voxel for the MPSS and MPMS data sets. To control for multiple comparisons (family-

wise Type I error) across voxels within a tract skeleton, the single threshold test was
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used to find a critical threshold over the entire tract skeleton. The critical threshold

is found by first obtaining the distribution of the maximum statistic over the entire

tract skeleton by permuting the labels for a given contrast. The critical threshold is

member number c + 1 of the permutation distribution when arranged in ascending

order. c is equal to αN rounded down to the nearest whole number, where α is the

p-value threshold (0.05 in this case) and N is the number of permutations. If the

maximal statistic of the actual labeling of the experiment is greater than or equal to

the critical threshold, the omnibus hypothesis can be rejected at 0.05. Also, any voxel

with a statistic greater than the critical threshold can then have its null hypothesis

rejected (i.e. where the null hypothesis is the mean DTI scalar values are equal for

controls and CAP group). A corrected p-value map of the tract skeleton results,

where each voxel’s p-value is the proportion of the maximal statistic distribution that

was greater than or equal to the voxel statistic [176, 173].

Cluster-based thresholding was performed at three different primary statistic

image thresholds (t = 2.0, 3.0, and 4.0) for the MPSS and MPMS data sets to help find

diffuse to focal areas (with increasing statistic image threshold) containing differences

in DTI scalar values between controls and CAP groups. Once the primary threshold

was applied to the statistic image, cluster patterns were assessed in the remaining

non-zero voxels. To control for multiple comparisons (family-wise Type I error) across

clusters within a single tract skeleton, a suprathreshold cluster test was employed,

which is identical to the single threshold test but uses cluster size instead [176, 173].

TFCE tests were performed on the MPSS, MPMS, and EMPMS data sets to
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avoid setting a primary statistic threshold on the tract skeleton of interest before

looking for differences in DTI scalar values between controls and CAP groups. The

main advantage of using the TFCE approach is that it is designed to find both

focal and diffuse areas containing significant differences in signal [177]. The TFCE

approach computes a TFCE score for each voxel that is determined by the voxel itself

and immediately adjacent voxels that are contributing signal. Using a score for each

voxel for statistical inference instead of the raw signal is supposed to enhance areas

of signal that may be part of a cluster without a primary statistic image threshold

(such as that in cluster-based thresholding) so it is easier to discriminate between

background noise and signal. The TFCE score is calculated at every voxel (p) by

summing the product of the extent of connecting voxels (e) raised to a set power

(E = 0.5) and height (h) raised to a set power (H = 2) over increments of the

total voxel height (hp) or voxel signal intensity. The TFCE score calculation can be

summarized as an integral, where height begins at zero (h0) and is incremented at a

finite dh to hp (Eq. 4.6) [177].

TFCE(p) =

∫ hp

h=h0

e(h)EhHdh (4.6)

TFCE score was used for statistical inference in the same manner as voxel-based

thresholding to form uncorrected and corrected p-value maps (that have been cor-

rected for multiple comparisons or family-wise Type I error across voxels within tract

skeleton with the single threshold test) [177].

Two approaches with different levels of stringency to account for multiple

comparisons across different contrasts were explored on the MPMS data set: false
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discovery rate (FDR) procedure and Bonferroni correction (Table 4.9). Different

levels of multiple comparison correction stringency were tested on the MPMS data

set to determine which method would extract the most meaningful results from the

EMPMS data set. (FDR was eventually selected). Multiple comparison correction

was not explored on the MPSS data set due to its unstable t-test findings that was

most likely due to the small numbers of participants in each groups. FDR controls for

false positives by controlling the expected proportion of error among null hypotheses

that have been rejected, which is less stringent than Bonferroni that removes the risk

for all false positives [121]. For the voxelwise analyses (voxel-based thresholding and

TFCE), the FDR procedure was applied to the uncorrected p-value maps. For the

cluster-based thresholding tests, the FDR procedure was applied to the p-values of

the clusters that remained after controlling for family-wise Type I error within tract

skeleton and thresholding at p < 0.05. A criterion of q < 0.05 was used for all FDR

applications. Bonferroni correction was applied by thresholding all p-value maps

corrected for family-wise Type I error within tract skeleton at 0.000595, (0.05 was

divided by the number of contrasts performed; 7 tracts x 4 DTI scalars x 3 contrasts

per DTI scalar).

4.2.9.3 DTI scalars and cognitive variable correlations

randomise was also used to determine how DTI scalars (FA, MD, AD, and RD)

correlated with cognitive performance on the following cognitive variables: SDMT,

Stroop Word, Stroop Color, Stroop Inference, TMTA, and TMTB for the EMPMS
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data set only using the TFCE method. Only prodromal HD participants were in-

cluded in the correlation analysis with age, years of education, gender, and site of

data collection as covariates. A correlation analysis was not pursued with the MPSS

data because results from previous statistical tests seemed unstable due to small

numbers of participants in some of the groups. Correlation analyses were also not

performed on the MPMS data set as statistical test exploration with the unpaired

t-tests seemed adequate to select the TFCE method for subsequent statistical anal-

yses. Statistical inference was made on the correlation coefficients for the EMPMS

data via t-tests in the same manner as the differences in DTI scalars between controls

and CAP groups with slight changes to the GLM (Section A.3). Correction for mul-

tiple comparisons within tract skeleton and across contrasts were done on the p-value

maps with FDR at a criterion of q < 0.05.

4.3 Results

4.3.1 T1-weighted and DTI atlases

Figure 4.1 shows the T1-weighted template (left) whose space was used to

construct the corresponding DTI template (right) for the EMPMS data set. T1-

weighted and DTI atlases for the other data sets can be found in Section A.4 in

Figures A.13 (SPMS), A.14 (MPSS), and A.15 (MPMS).

4.3.2 Fiber tracts

Figure 4.2 shows several views of the fiber tracts (UNC, FM, IFO, and ATR)

derived from whole brain tractograms of the DTI templates overlaid on the T1-
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Figure 4.1: T1-weighted and DTI templates for EMPMS data.

weighted template for each of the data sets: SPMS, MPSS, MPSS, and EMPMS.

Different tracts are highlighted with different colors: left UNC (light blue), right

UNC (dark blue), FM (yellow), left IFO (light red), right IFO (dark red), left ATR

(light green), and right ATR (dark green). In Figure 4.2, a noticeable increase in

tract uniformity can be observed as more participants are used to construct the DTI

atlas.

4.3.3 SPMS data: DTI scalar variability analysis

4.3.3.1 Variability of mean DTI scalars of fiber tracts

CVs of mean DTI scalars in all tracts ranged from 1.02 to 9.88% and are

displayed in Table 4.10. Mean MD seemed to have the least variability with an

average CV of 2.51% across all tracts, followed by mean AD, mean RD, and then mean
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FA. Mean FA had the most variability with an average CV of 6.12%. The inferior

fronto-occipital fasciculi had the least variability across DTI scalar measurements

with CVs of 2.59% and 2.07% in left and right hemispheres, respectively. Amount of

variability in fiber tracts across DTI scalar measurements increased in the following

order: FM, ATRs, and uncinate fasciculi. The uncinate fasciculi possessed the most

variability across DTI scalar measures with CVs of 6.23% and 5.06% for left and right

hemispheres, respectively. Plots of mean DTI scalar values across each tract for all

scans are provided in Figure 4.3.

4.3.3.2 Variability of mean DTI scalars in skeleton

CVs of mean DTI scalars in all DTI scalars projected to skeletonized TPMs

ranged from 1.49 to 13.71% and are displayed in Table 4.11. Mean AD seemed to have

the least variability with an average of 4.58% across all skeletonized TPMs, followed

by mean MD, mean FA, and mean RD. Mean RD had the most variability with

an average CV of 5.13%. The right IFO had the least variability across DTI scalar

measurements with a CV of 2.29%. Amount of variability in skeletonized TPMs across

DTI scalar measurements increased in the following order: FM, right and left ATRs,

left IFO, and right and left uncinate fasciculi. The uncinate fasciculi possessed the

most variability across DTI scalar measures with CVs of 7.29% and 10.08% for right

and left hemispheres, respectively. Plots of mean DTI scalar values across each tract

skeleton for all scans are provided in Figure 4.4. It should be noted that mean DTI

scalar values across each tract skeleton are generally greater than their corresponding
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means across entire tracts.

4.3.4 Multi-participant, single-site data

As stated earlier, t-tests were performed on the MPSS data set to find signif-

icant differences in mean DTI scalars between controls and CAP groups using voxel-

based thresholding, cluster-based thresholding (at various primary statistic thresh-

olds), and TFCE tests using single threshold or suprathreshold cluster test to correct

for multiple comparison within tracts. However, exploration of FDR and Bonferroni

methods for multiple comparison correction and correlations between DTI scalars and

cognitive variables were not pursued with the MPSS data set due to unstable t-test

results. Results from the left ATR and right IFO t-tests will be used to illustrate the

problems of the MPSS data set. Plots of mean DTI scalars across the left ATR tract

and tract skeleton in Figure 4.5 show that even after the removal of outliers, there

were probably too few samples to properly represent the true means of each group.

In addition, Table 4.12 shows that significant differences in MD and RD were present

in clusters in the left ATR between the control and low CAP group, but not between

controls and those with higher disease burden. Aside from the left ATR findings, the

right IFO from the MPSS data set counterintuitively had a greater number of voxels

where AD was significantly greater in the medium CAP group than controls than the

contrast comparing controls and the high CAP group. In general, a greater effect is

expected in participants with greater disease burden (high CAP group) and not the

opposite.
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4.3.5 Multi-participant, multi-site data

The purpose of the MPMS data set was to illustrate how examining the differ-

ent aspects of each permutation test and methods for multiple comparison correction

dictated the decision to use the TFCE test and FDR for the EMPMS data set. The

right IFO was selected to be featured in this section since it contains multiple re-

gions of the lateral PFC that may be involved in prodromal HD progression [178].

In addition, two particular sets of results that were found in a previous study were

acquired again in the MPMS data set through the right IFO: (1) increased mean

RD in the right lateral orbitofrontal and right pars triangularis WM regions defined

by FreeSurfer in the high CAP group in comparison to controls; (2) and a negative

correlation between TMTB score and FA in the right pars triangularis and right me-

dial orbitofrontal WM regions defined by FreeSurfer in prodromal HD participants

[178]. The following abbreviations that have been influenced by the FreeSurfer la-

beling convention will be used to refer to regions of the IFO (Figure 4.12): IFO1

(medial orbitofrontal gyrus), IFO2 (lateral orbitofrontal WM), IFO3 (pars orbitalis

WM), IFO4 (pars triangularis WM), IFO5 (WM lateral to the putamen, medial to

the insular gyrus), IFO6 (WM posterior to the putamen but does not terminate in the

occipital or parietal lobe), IFO7 (WM that projects to the occipital lobe), and IFO8

(WM that projects to the parietal lobe). It is important to note that the FreeSurfer

labeling convention includes the medial orbitofrontal gyrus in its lateral orbitofrontal

region [179]. The IFO generated in this study does not enter the area FreeSurfer has

designated as its medial orbitofrontal region (gyrus rectus) [179] but does enter the
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medial orbitofrontal gyrus, which has been made into a separate region (IFO1).

4.3.5.1 Mean RD: controls versus CAP groups

The TFCE method proved to be the most reliable permutation test among

voxel-based thresholding, cluster-based thresholding, and TFCE methods. As for

methods of multiple comparison correction, FDR seemed to be the most appropriate

for the MPMS data set. Between the voxelwise and cluster-based approaches, cluster-

based thresholding did not report any clusters in the lateral PFC with significant dif-

ferences in mean RD between controls and CAP groups (Figure 4.6). Between the two

voxelwise approaches, voxel-based thresholding and TFCE, voxel-based thresholding

produced many individual significant voxels that were detached from any clusters

that appeared, while the TFCE method provided large clusters with few detached

voxels. In addition, the TFCE method helped to enhance findings in the lateral PFC

that voxel-based thresholding suggested with a few significant voxels, as shown in the

right lateral orbitofrontal gyrus in Figure 4.7 and right pars triangularis in Figure

4.8, which were found in a previous study [178]. As for correction for multiple com-

parisons, the FWE alone and with the Bonferroni methods proved too stringent for

this experiment as both eliminated all findings in the lateral PFC. All clusters that

remained after controlling for FWE with the maximal statistic distribution remained

after correction with FDR at a criterion of q < 0.05 and are therefore not shown.

The part of the right IFO that contained the most significant differences in

RD between controls and CAP groups tended to be region IFO6 (WM posterior to
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the putamen but did not terminate in the occipital or parietal lobe). Upon visual

inspection of region IFO6, a large portion presented a statistically significant group

difference (p-value < 0.001) along the entire region. The most significant region

of group differences (p-value < 0.001) also seemed to be concentrated in the area

immediately posterior to the putamen, as this region often remained significant after

Bonferroni correction (one of most conservative correction) and in contrasts where

the effect of RD would be less (controls versus medium CAP group).

4.3.5.2 Negative correlation between FA and TMTB

The suitability of the TFCE method and FDR correction for detecting differ-

ences in RD between controls and CAP groups seemed to extend to the correlation

analysis. The results of the correlation analyses using voxel-based and cluster-based

thresholding seemed to match the t-test contrasts using the same tests as they also

did not report significant correlations in the lateral PFC when looking for a negative

correlation between FA and TMTB. The TFCE method again helped to enhance a

significant negative correlation between FA and TMTB in the right pars triangularis

WM (Figure 4.9) that was also seen in a previous study [178]. Again, FWE alone

and with the Bonferroni methods proved too stringent for this experiment as both

eliminated nearly all findings in the lateral PFC. All clusters that remained after con-

trolling for FWE with the maximal statistic distribution remained after correction

with FDR at a criterion of q < 0.05 and are therefore not shown.

The part of the right IFO that contained the most significant negative corre-
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lations between FA and TMTB time was again region IFO6 (WM posterior to the

putamen but did not terminate in the occipital or parietal lobe) (Table 4.14). Again,

the most significant group differences (p-value < 0.05) seemed to be concentrated

immediately posterior to the putamen and remained significant even after Bonferroni

correction (although not visible in the axial plane displayed in Figure 4.9).

4.3.6 Expanded multi-participant, multi-site data

Descriptions of the EMPMS data results will be referring to the regions identi-

fied in Figures 4.10, 4.11, 4.12, and 4.13 for the FM, ATR, IFO, and UNC fiber tracts,

respectively. Again, these labels have been influenced by the convention FreeSurfer

uses to label WM regions. The medial orbitofrontal gyrus has been given a sepa-

rate label in the IFO and UNC since it is included in the lateral orbitofrontal region

defined by FreeSurfer [179].

4.3.6.1 Age effect on RD using controls

When the mean RD of the right IFO from the lower and upper thirds of

controls ranked by age were compared (Table 4.15), mean RD for the upper third

was significantly higher in various regions of the right IFO. Specifically, the upper

third of control participants ranked by age had a higher RD in 41.44% of the voxels

in the right IFO after controlling for years of education, gender, and site of data

collection and correcting with FDR with a criterion of q < 0.05. Regions of the right

IFO that contained significant voxels included right IFO2 (lateral orbitofrontal WM),

IFO4 (pars triangularis), IFO5 (lateral to the putamen, medial to the insular gyrus),
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IFO6 (WM posterior to the putamen but not extending to occipital or parietal lobes),

IFO7 (WM extending to the occipital lobe), and IFO8 (WM extending to the parietal

lobe) (Figure 4.14).

4.3.6.2 Mean DTI scalars: controls versus CAP groups

Regions referred to in Table 4.16 were defined in Figures 4.10 through 4.13. In

general, mean MD, AD, and RD for the high CAP group were all significantly higher

than the means of controls in at least 10% of the voxels in all tracts except for the left

UNC (MD and RD only) (Figure 4.15 and Table 4.16). When comparing the control

and high CAP group, the largest percentages of significant voxels were usually seen

when assessing MD and RD (except for the right UNC). When a significant difference

in mean DTI scalar was present between the control and medium CAP group, it

was usually seen in MD and/or RD. For the control versus medium CAP groups

contrasts, mean MD and RD were again higher than controls and the number of

voxels containing findings was less than the control versus high CAP groups contrast.

The only tract that had significant differences in AD between the control and medium

CAP groups was the ATR, where mean AD was higher lateral to the caudate for the

medium CAP group bilaterally. Mean DTI scalar differences between the control and

low CAP groups and for FA (except for limited areas in the left and right IFOs) were

not detectable in this experiment. Plots to illustrate the mean DTI scalar values

across the significant voxels for controls versus medium and/or high CAP group(s)

are provided in Figures 4.16 and 4.17.
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4.3.6.3 Cognitive variable correlations with DTI scalars

Regions referred to in Tables 4.17 and 4.18were defined in Figures 4.10 through

4.13. For reference, increased MD, AD, and RD and decreased FA values in WM are

generally associated with increased disease burden, while decreased SDMT, Stroop

Color, Stroop Word, and Stroop Interference and increased TMTA and TMTB times

indicate decline in cognitive performance. Results discussed here pertain to more

widespread findings where significant correlations were present in more than 20% of

voxels within a tract. Increased MD and RD and decreased FA, but not increased AD,

often correlated with declines in cognitive performance in many of the tracts examined

in this experiment. Stroop Color and Stroop Word scores positively correlated most

often with FA in the FM, while negatively correlating most often with MD and RD in

both the FM and ATR tracts. SDMT score correlations were much like Stroop Color

and Stroop Word, with additional negative correlations with MD and RD in the IFO

tracts. TMTA and TMTB times differentiated themselves from the other cognitive

variables by positively correlating with MD and RD in the UNC tracts. TMTA and

TMTB times also produced results like those seen with SDMT, Stroop Color, and

Stroop Word scores. There was an absence of findings involving Stroop Interference

score in this experiment.

4.4 Discussion

The main goal of this study was to build upon past volume and DTI scalar

studies on the frontal lobe in prodromal HD by examining the diffusivity properties of
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major WM tracts terminating in the PFC. Unbiased DTI atlases of increasing pop-

ulation complexity (healthy controls, single to multi-site sampling of both healthy

controls and prodromal HD participants) were built using non-linear transformations

derived from T1-weighted images and were used to create four major WM tracts

terminating in the PFC: FM, left and right ATR, left and right IFO, and left and

right UNC. Tract skeletons were derived for each tract and FA, MD, AD, and RD

were projected to each tract skeleton. Fiber tracts derived from the DTI atlas built

from healthy controls (SPMS data set) showed that mean CVs for DTI scalar values

remained under 10% for both tracts and tract skeletons, where FA had the highest

CV. Mean CVs of DTI scalar values across all tracts and tract skeletons also remained

under 10% except for the left UNC. Fiber tracts derived from DTI atlases built from

populations of increasing complexity (MPSS and MPMS data sets) demonstrated

that randomise is a suitable tool for investigating WM changes in prodromal HD

participants in comparison to controls with permutation methods using data from

multiple sites. randomise provided widespread findings once the appropriate method

for detecting significant voxels (TFCE), method for correcting for multiple compar-

isons (FDR), and number of participants (greater than seven to eight per group)

were used. Increased MD, AD, and RD are usually associated with increased dis-

ease burden. For the EMPMS data set, mean MD, AD, and RD for the high CAP

group were all significantly greater than the means of controls in at least 10% of

the voxels in all tracts except for the left UNC (MD and RD only). If a significant

finding was present between the medium CAP and controls, it was usually for MD
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and RD in the IFO tracts. As for correlations, increased MD and RD and decreased

FA (with a slightly lower frequency) decreased FA correlated with poorer cognitive

performance with many of the tracts in this study. TMTA and TMTB times had

the most widespread significant correlations because they correlated with FA, MD,

and RD in nearly every tract. SDMT had the second most widespread significant

correlations but did not have as many findings in the UNC tracts as the TMT times.

Stroop Word and Color scores seemed limited to significant correlations in the FM

and ATR tracts. Together, the gradient of effects seen in the differences in DTI scalar

values and their correlations with cognitive variables that have a documented ability

in detecting cognitive deficits in prodromal HD participants suggest that DWI can

provide reliable markers of disease progression. Specifically, the results of this study

suggest that monitoring MD and RD in the IFO while measuring TMT time could

serve as a reliable biomarker to monitor disease progression in the prodromal HD

stage.

Left and right UNCs consistently had the highest CVs in comparison to all

other tracts. Greater variation in UNC CV could be due to imaging artifacts caused

by proximity to an air-tissue interface that could vary the number and quality of

fibers estimated. CVs derived in this study (less than 10%) are consistent with

another study that used CVs of mean DTI scalars across fiber tracts in repeat scans

to evaluate reliability of measurements derived from fiber tracts [103].

The MPSS data set was problematic mainly due to its small samples sizes

for each group. randomise performs its statistical tests based on the distribution of
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statistic values derived from permutations of unique relabelings of the data. The

number of unique permutations randomise can achieve for a given statistical test is

limited by the number of samples it is provided. The formula for computing the

number of unique permutations possible for a two-sample t-test, where n1 and n2 are

the sizes of the two samples, is as follows [180, 181]:

Permutations = (n1 + n2)!/(n1!× n2!) (4.7)

Therefore, when performing a contrast between the control (n1 = 8) and low CAP

group (n2 = 5) for the MPSS data set using 10,000 permutations, the result could not

be considered reliable because there were only 1,287 possible unique permutations.

randomise recommends using at least unique 5,000 permutations to build a somewhat

representative distribution that would only serve as a quick test to determine if sig-

nificant findings are present [180, 181]. The expected instability of the controls versus

low CAP group contrast could explain why it would be significant in the absence sig-

nificant findings in the control versus medium or high CAP group contrast. As for the

other contrasts tested using the MPSS data set, the sample sizes for controls versus

medium CAP group would allow for 24,310 unique permutations while the controls

versus high CAP group would have 12,870. Although the controls versus medium

and controls versus high CAP groups technically would provide a suitable number of

unique permutations, the number of significant voxels were often very small. Some

significant voxel counts amounted to less than 10, which could be explained by the

lack of power with these minimal sample sizes or skewed means of groups due to

non-uniform sampling of the population.
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The fact that the TFCE method proved to be a more reliable permutation

method than voxel-based and cluster-based thresholding is not too surprising since

the TFCE method was developed to overcome the limitations of the other methods

[177]. Many of the limitations of simple voxel-based and cluster-based thresholding

methods are based on the fact that the expected signal extent is rarely known [177].

As stated by Smith et al., simple voxel-based thresholding is not very sensitive to

finding true signals because voxels are analyzed separately. When using simple voxel-

based thresholding, variance smoothing to increase signal is an option. However, the

smoothing size is an arbitrary number set during implementation and usually without

knowing the true signal in the data [177]. Cluster-based thresholding is supposed

to be more sensitive than simple voxel-based [182]. However, the primary statistic

threshold required for cluster-based thresholding is set arbitrarily without knowledge

of the actual signal extent and will have a large impact on the final output [177].

In addition, the logic behind setting the primary threshold is no more sophisticated

than selecting a lower statistic value to find broader clusters and a higher for smaller

clusters [183]. Therefore, TFCE bypasses the need for user-defined thresholds since its

algorithm will detect unknown signal in a given voxel and how that signal corresponds

to signal in neighboring voxels using signal height and signal extent parameters that

have been optimized for a wide range of data [177].

Much like the TFCE method, FDR-controlling procedures for multiple com-

parison correction was developed with the goal of finding a method that is more

appropriate for solving neuroimaging problems [184]. Therefore, it was not too sur-
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prising that FDR seemed more appropriate than Bonferroni correction, single thresh-

old test, and suprathreshold cluster test. Bonferroni correction traditionally been

used because it has a strong control of Type I error. However, if applied to voxelwise

study in neuroimaging where every voxel contains a test, Bonferroni correction is very

wasteful because α is being reduced to unreasonably low values. Another way to use

Bonferroni correction is to consider the number of contrast is the number of tests

that will divide α. In addition, to limit the strength of Bonferroni correction, one

may limit the number of contrasts done in an experiment. Even when considering the

number of contrasts as the number of tests, Bonferroni correction still ends up being

wasteful because it is not always possible to perform a small number of tests and

has a tendency to wipe out both false and true positives when applied to an entire

data set regardless [184]. For permutation tests, single threshold and suprathresh-

old cluster tests were specifically designed to control for Type I error by using the

distribution of the maximum statistic values from permuting the labels of the given

data. However, single threshold and suprathreshold cluster tests are also considered

very strong controllers of Type I error rate and seemed to remove too many findings

even in this experiment. FDR-controlling procedures instead control the expected

proportion of the rejected hypotheses that are falsely rejected and is adaptable to

different datasets, and thus do not eliminate signal unnecessarily [184].

As for the large EMPMS data set, MD and RD seemed to be the most robust

of the DTI scalars as both produced the most findings in the mean differences between

groups and correlation analyses. Out of the cognitive measures evaluated, TMT times
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seemed to be the most robust by correlating with diffusivity changes in almost every

tract. These findings with MD, RD, and TMT times are consistent with a previous

study looking at mean scalar values WM regions of the PFC (Chapter 3). In the scalar

study, increased MD and RD were seen in both left and right lateral and inferior PFC

WM in both medium and high CAP groups versus controls, while TMTB negatively

correlated with FA in the right inferior frontal and medial orbitofrontal WM and

positively correlated with RD in the right inferior frontal WM [178]. This study

produced findings similar to the scalar study in Chapter 3 that examined WM of

the PFC, in addition to many other findings. The widespread positive correlations

between increased TMT times and increased MD and RD and decreased FA seen in

this study could be explained by the many cognitive functions the TMTs assess [135].

Increased TMTA times demonstrated in the prodromal HD participants here could be

explained by deficits in attention and visual processing caused by diffusivity changes

in the WM of the IFOs that reflect increased disease burden [150, 151], while increased

TMTB time could be due to deficits in memory caused by diffusivity changes in the

WM of the ATRs and UNCs that reflect increased disease burden [145, 146, 152, 135].

Since SDMT score is a measure of working memory, perhaps decreased SDMT scores

can be explained by memory deficits caused by diffusivity changes the ATRs and left

UNC [118, 152].

The main limitation of this study was that the fiber tracking and scalar mea-

surements used were single tensor-based like the analysis performed in Chapter 3,

where the use of other models for diffusion have been addressed. Specifically for this
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study, although use of a single tensor model for diffusion did not completely limit the

types of fiber tracking algorithms to streamline tracking, DTI atlases will continue

to prevent the use of multi-tensor fiber tracking algorithms that require a DWI as

input. Therefore, atlas-based fiber tracking analyses will be limited to using DTI at-

lases until DWI atlases becomes commonplace. Future directions include expanding

upon these findings in the PFC by perhaps using the same methods in other tracts

of interest to prodromal HD. In addition to WM in the PFC, it may also be useful

to examine WM extending to the PFC from the striatum and beyond to characterize

how HD affects corticostriatal loops in their entirety. Ultimately, the above analyses

will be expanded to characterize changes in individual subjects longitudinally.

4.5 Conclusion

The main goal of this study was to build upon past volume and DTI scalar

studies on the frontal lobe in prodromal HD by examining the diffusivity properties

of major WM tracts terminating in the PFC. In this study, the gradient of effects

seen in the differences in DTI scalar values and their correlations with cognitive

variables that have a documented ability in detecting cognitive deficits in prodromal

HD participants suggest that DWI can provide reliable markers of disease progression.

Specifically, the results of this study suggest that monitoring MD and RD in the IFO

while measuring TMT time could serve as a reliable biomarker to monitor disease

progression in the prodromal HD stage.



www.manaraa.com

138

T
ab

le
4.

6:
S
ca

n
n
er

p
ar

am
et

er
s

fo
r

d
iff

u
si

on
-w

ei
gh

te
d

im
ag

es
w

it
h

30
to

35
u
n
iq

u
e

gr
ad

ie
n
t

d
ir

ec
ti

on
s

p
er

sc
an

w
it

h
a

b
-v

al
u
e

of
1,

00
0

se
c/

m
m

2
co

ll
ec

te
d

at
va

ri
ou

s
P

R
E

D
IC

T
-H

D
st

u
d
y

si
te

s
w

it
h

ze
ro

ga
p

b
et

w
ee

n
ax

ia
l

sl
ic

es
.

S
it

e
V

en
d
or

S
ca

n
s

b
0s

G
ra

d
s

V
ox

el
S
li
ce

s
T

E
T

R
B

W
(H

z/
F

O
V

M
at

ri
x

(m
m

)
(m

s)
(m

s)
p
ix

el
)

(m
m

)
(m

m
)

00
1

G
E

1
2

35
1.

0x
1.

0x
2.

4
61

85
.5

17
00

0
19

53
25

6x
25

6
12

8x
12

8
00

2
P

h
il
ip

s
2

1
32

2.
0x

2.
0x

2.
0

70
92

.0
11

76
1

12
76

12
8x

12
8

12
8x

12
6

00
7

S
ie

m
en

s
2

1
30

2.
0x

2.
0x

2.
0

70
92

.0
12

00
0

15
65

11
52

x
11

52
12

8x
12

8
02

4
S
ie

m
en

s
2

1
30

2.
0x

2.
0x

2.
0

70
92

.0
12

00
0

13
95

11
52

x
11

52
12

8x
12

8
02

7
S
ie

m
en

s
2

1
30

2.
0x

2.
0x

2.
0

70
92

.0
12

00
0

15
63

11
52

x
11

52
12

8x
12

8
03

2
S
ie

m
en

s
1-

2
1

30
2.

0x
2.

0x
2.

0
70

10
4.

0
12

00
0

15
65

11
52

x
11

52
12

8x
12

8
04

5
S
ie

m
en

s
2

1
30

2.
0x

2.
0x

2.
0

70
92

.0
12

00
0

15
63

11
52

x
11

52
12

8x
12

8
04

8
P

h
il
ip

s
2

1
32

2.
0x

2.
0x

2.
0

70
92

.0
96

79
12

8x
12

8
05

0
S
ie

m
en

s
1

1
30

2.
0x

2.
0x

2.
0

70
92

.0
12

00
0

15
63

-1
56

5
11

52
x
11

52
12

8x
12

8
05

4
G

E
2

1-
2

35
1.

0x
1.

0x
2.

4
61

85
.5

-9
6.

5
17

00
0

19
53

25
6x

25
6

12
8x

12
8

06
1

P
h
il
ip

s
1

1
30

2.
0x

2.
0x

2.
0

70
92

.0
12

00
0

15
65

11
52

x
11

52
12

8x
12

8
07

3
S
ie

m
en

s
2

1
30

2.
0x

2.
0x

2.
0

70
92

.0
12

00
0

15
65

11
52

x
11

52
12

8x
12

8
12

0
S
ie

m
en

s
2

1
30

2.
0x

2.
0x

2.
0

70
92

.0
12

00
0

15
63

-1
56

5
11

52
x
11

52
12

8x
12

8
14

4
S
ie

m
en

s
1

1
30

2.
0x

2.
0x

2.
0

70
11

1.
0

14
50

0
15

63
-1

56
5

11
52

x
11

52
12

8x
12

8
17

7
S
ie

m
en

s
2

1
30

2.
0x

2.
0x

2.
0

70
92

.0
12

00
0

13
95

11
52

x
11

52
12

8x
12

8
N

ot
e:

S
ca

n
s

=
N

u
m

b
er

of
sc

an
s

co
ll
ec

te
d

p
er

p
ar

ti
ci

p
an

t.
G

ra
d
s

=
N

u
m

b
er

of
n
on

-c
ol

li
n
ea

r
gr

ad
ie

n
t

d
ir

ec
ti

on
s

p
er

sc
an

.
V

ox
el

=
V

ox
el

d
im

en
si

on
s.

S
li
ce

s
=

N
u
m

b
er

of
sl

ic
es

p
er

3D
vo

lu
m

e
in

th
e

4D
d
iff

u
si

on
-w

ei
gh

te
d

im
ag

e.
T

E
=

E
ch

o
ti

m
e.

T
R

=
R

ep
et

it
io

n
ti

m
e.

B
W

=
P

ix
el

b
an

d
w

id
th

.
F

O
V

=
F

ie
ld

of
v
ie

w
.



www.manaraa.com

139

Table 4.7: Scanner parameters for T1-weighted images from PREDICT-HD sites.

Site Vendor TI TE TR Flip NEX Bandwidth FOV Matrix
(ms) (ms) (ms) Angle (Hz/pixel) (mm) (mm)

001 GE 450 2.98 7.79 12o 1 244 256x256 256x256
002 Philips 3.50 7.69 224x224
007 Siemens 900 2.87 2300 10o 1 240 256x256 256x256
024 Siemens 900 2.87 2300 10o 1 238 256x256 256x256
027 Siemens 900 2.87 2300 10o 1 238 256x256 256x256
032 Siemens 900 1.91 2300 10o 1 240 256x256 256x256
045 Siemens 900 2.87 2300 10o 1 238 256x256 256x256
048 Philips 3.50 7.70 8o 224x224
050 Siemens 900 2.85 2300 10o 1 240 256x256 256x256
054 GE 450 2.79 6.50 12o 1 244 256x256 256x256
061 Siemens 900 2.87 2300 10o 1 240 256x256 256x256
073 Siemens 900 2.92 2300 10o 1 240 256x256 256x256
120 Siemens 900 2.87 2300 10o 1 238 256x256 256x256
144 Siemens 900 1.93 2300 10o 1 240 512x512 256x256
177 Siemens 900 2.87 2300 10o 1 240 256x256 256x256
Note: TI = Inversion time. TE = Echo time. TR = Repetition time. NEX = Number
of excitations. FOV = Field of view.
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Table 4.8: Scanner parameters for T2-weighted images from PREDICT-HD sites.

Site Vendor TE TR Flip NEX Bandwidth FOV Matrix
(ms) (ms) Angle (Hz/pixel) (mm) (mm)

001 GE 99.0 4900 90o 2 163 512x512 288x288
002 Philips 184 2500 224x224
007 Siemens 433 4800 120o 1 590 256x256 256x250
024 Siemens 430 4800 120o 1 592 256x256 256x250
027 Siemens 430 4800 120o 1 592 256x256 256x250
032 Siemens 459 4800 120o 1 590 256x256 256x250
045 Siemens 430 4800 120o 1 592 256x256 256x250
048 Philips 183 2500 90o 224x224
050 Siemens 435 4800 120o 1 590 256x256 256x254
054 GE 69.2 3000 90o 1 244 512x512 288x288
061 Siemens 433 4800 120o 1 590 256x256 256x250
073 Siemens 433 4800 120o 1 590 256x256 256x250
120 Siemens 430 4800 120o 1 592 256x256 256x250
144 Siemens 433 4800 120o 1 750 256x256 256x250
177 Siemens 433 4800 120o 1 590 256x256 256x250
Note: TE = Echo time. TR = Repetition time. NEX = Number of excitations. FOV
= Field of view.

Table 4.9: Correction for multiple comparisons within tract skeleton and across con-
trasts performed on the MPMS data set with different levels of stringency, where
FDR was less strict.

t-test Correction within Correction across
procedure tract skeleton contrasts
Voxel-wise thresholding FDR on uncorrected FDR on uncorrected

p-value map p-value map
Voxel-wise thresholding Single threshold Bonferroni on corrected

test p-value map
Cluster-based thresholding Suprathreshold FDR on p-values of

cluster test significant clusters
Cluster-based thresholding Suprathreshold Bonferroni on corrected

cluster test p-value map
TFCE FDR on uncorrected FDR on uncorrected

p-value map p-value map
TFCE Single threshold Bonferroni on corrected

p-value map p-value map
Note: FDR = False discovery rate. TFCE = Threshold free cluster enhancement.
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Table 4.10: Coefficients of variation (CVs) for mean DTI scalar values across each
fiber tract from scans of a single, healthy subject collected at eight different sites
(SPMS data).

Fiber Tract FA (%) MD (%) AD (%) RD (%) Average CV (%)
FM 4.35 1.99 2.74 2.89 2.99
Left ATR 7.08 2.42 2.64 3.81 3.99
Left IFO 4.03 1.71 2.30 2.34 2.59
Left UNC 9.85 4.58 3.25 7.24 6.23
Right ATR 5.65 1.88 3.25 2.18 3.24
Right IFO 3.91 1.02 1.36 1.99 2.07
Right UNC 7.94 3.95 2.84 5.50 5.06
Average CV (%) 6.12 2.51 2.62 3.71
Note: Average CVs for each DTI scalar and fiber tract are also shown. FA = Frac-
tional anisotropy. MD = Mean diffusivity. AD = Axial diffusivity. RD = Radial
diffusivity. FM = Forceps minor. ATR = Anterior thalamic radiations. IFO =
Inferior fronto-occipital fasciculus. UNC = Uncinate fasciculus.

Table 4.11: Coefficients of variation (CVs) for mean DTI scalar values across each
fiber tract skeleton from scans of a single, healthy subject collected at eight different
sites (SPMS data).

Fiber Tract FA (%) MD (%) AD (%) RD (%) Average CV (%)
FM 3.40 1.88 1.88 2.62 2.44
Left ATR 4.16 2.89 3.08 3.10 3.31
Left IFO 4.89 4.50 3.48 5.23 4.53
Left UNC 7.78 11.44 7.39 13.71 10.08
Right ATR 4.44 1.55 2.43 1.49 2.48
Right IFO 3.50 1.92 1.63 2.13 2.29
Right UNC 6.26 7.91 7.33 7.65 7.29
Average CV (%) 4.92 4.58 3.89 5.13
Note: Average CVs for each DTI scalar and fiber tract are also shown. FA = Frac-
tional anisotropy. MD = Mean diffusivity. AD = Axial diffusivity. RD = Radial
diffusivity. FM = Forceps minor. ATR = Anterior thalamic radiations. IFO =
Inferior fronto-occipital fasciculus. UNC = Uncinate fasciculus.
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Figure 4.3: Plots of mean DTI scalars across tracts for SPMS data. Tract colors
correspond to plots colors. FA = Fractional anisotropy. MD = Mean diffusivity. AD
= Axial diffusivity. RD = Radial diffusivity. FM = Forceps minor (yellow). LATR =
Left anterior thalamic radiations (light green). LIFO = Left inferior fronto-occipital
fasciculus (light red). LUNC = Left uncinate fasciculus (light blue). RATR = Right
anterior thalamic radiations (dark green). RIFO = Right inferior fronto-occipital
fasciculus (dark red). RUNC = Right uncinate fasciculus (dark blue).
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Figure 4.4: Plots of mean DTI scalars across tract skeletons for SPMS data. Tract
colors correspond to plots colors. FA = Fractional anisotropy. MD = Mean diffusivity.
AD = Axial diffusivity. RD = Radial diffusivity. FM = Forceps minor (yellow).
LATR = Left anterior thalamic radiations (light green). LIFO = Left inferior fronto-
occipital fasciculus (light red). LUNC = Left uncinate fasciculus (light blue). RATR
= Right anterior thalamic radiations (dark green). RIFO = Right inferior fronto-
occipital fasciculus (dark red). RUNC = Right uncinate fasciculus (dark blue).
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Figure 4.5: Mean DTI scalars (FA, MD, AD, and RD) across the entire left ATR
tract and the left ATR tract skeleton for MPSS data.
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Table 4.12: Areas with threshold free cluster enhancement-based differences between
control (C) and CAP groups (L, M, H) in DTI scalars for MPSS data where statis-
tic maps have been corrected for family-wise error with a single threshold test and
thresholded at p < 0.05, but were not corrected for number of total contrasts done
in this experiment (no Bonferroni).

Tract Scalar Contrast Cluster Size p Location
Number

FM RD C < H 1/2 16 0.048 Right Zone 1
2/2 24 0.044 Right Zone 1

Left ATR MD C < L 1/1 34 0.032 Left Zone 1
Left ATR RD C < L 1/1 5 0.044 Left Zone 1
Left IFO MD C < M 1/1 420 0.023 Left Zone 2, 4

C < H 1/2 25 0.048 Left Zone 3
2/2 831 0.006 Left Zone 2, 3, 4

Left IFO RD C < L 1/2 12 0.046 Left Zone 4
2/2 99 0.042 Left Zone 2, 4

C < M 1/1 98 0.021 Left Zone 2, 4
C < H 1/1 749 0.003 Left Zone 2, 3, 4

Left UNC FA C > H 1/1 10 0.021 MO gyrus
Right IFO FA C > H 1/2 2 0.049 Right Zone 4

2/2 69 0.040 Right Zone 4
Right IFO MD C < M 1/2 6 0.049 Right Zone 3

2/2 11 0.048 Right Zone 3
C < H 1/1 1514 0.006 Right Zone 2, 3, 4

Right IFO AD C < M 1/1 116 0.011 Right Zone 3, 4
C < H 1/4 1 0.050 Right Zone 2

2/4 10 0.040 Right Zone 2
3/4 15 0.045 Right Zone 2
4/4 39 0.040 Right Zone 2

Right IFO RD C < H 1/2 136 0.036 Right Zone 3
2/2 733 0.019 Right Zone 2, 4

Right UNC RD C < H 1/1 3 0.041 Right Zone 5
Note: Cluster number = Number out of total clusters for statistic map. Size = Cluster
size (voxels). MO = Medial orbitofrontal. Zone 1 = Lateral to superior frontal gyrus,
medial to rostral middle frontal gyrus. Zone 2 = Posterior to putamen, lateral to
precuneus. Zone 3 = Lateral to lingual gyrus or cuneus, medial to lateral occipital
gyrus. Zone 4 = Lateral to precuneus, medial to the inferior parietal lobule. Zone 5
= Connection between temporal and frontal lobes, medial to insular gyrus.
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Figure 4.6: Clusters with significant differences in RD found with t-tests between
controls and the high CAP group in the right IFO using the cluster-based thresholding
at three different primary thresholds (t = 2.0, 3.0, 4.0). Significant clusters were in
regions IFO5, IFO6, and IFO7 with FWE correction (and FDR) and Bonferroni
correction, but not in the lateral PFC.
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Figure 4.7: Clusters with significant differences in RD found with t-tests between
controls and the high CAP group in the right IFO (right lateral orbitofrontal WM)
using voxel-based thresholding and TFCE with different types of correction for multi-
ple comparisons. The TFCE test with FDR correction does not eliminate significant
findings in the right lateral orbitofrontal WM.
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Figure 4.8: Clusters with significant differences in RD found with t-tests between
controls and the high CAP group in the right IFO (right pars triangularis WM) using
voxel-based thresholding and TFCE with different types of correction for multiple
comparisons. The TFCE test with FDR correction does not eliminate significant
findings in the right pars triangularis WM.
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Table 4.13: Percentages of the right IFO tract skeleton voxels that contained signifi-
cant differences in mean RD between control (C) and the medium and/or high CAP
groups (M, H) and the general location of these voxels.

Within Across Significant Regions with significant
Test Contrast tract tests voxels (%) differences (IFO#)
Voxel-based C < M FDR FDR 0.21 6
thresholding FWE None 0.02 6

FWE Bonferroni 0.00 None
C < H FDR FDR 10.09 2, 4, 5, 6, 7, 8

FWE None 0.28 5, 6
FWE Bonferroni 0.00 None

CBT, C < H FWE None 14.37 6, 7
t = 2.0 FWE Bonferroni 14.37 6, 7
CBT, C < H FWE None 3.58 5, 6
t = 3.0 FWE Bonferroni 0.00 None
CBT, C < H FWE None 0.37 6
t = 4.0 FWE Bonferroni 0.00 None
TFCE C < H FDR FDR 58.67 1, 2, 3, 4, 5, 6, 7, 8

FWE None 33.20 5, 6, 7
FWE Bonferroni 1.54 6

Note: Type of permutation test and correction method within tract and across con-
trasts are noted. All clusters that remained after controlling for FWE with the
maximal statistic distribution remained after correction with FDR at a criterion of q
< 0.05. CBT = Cluster-based thresholding.



www.manaraa.com

150

FWE Bonferroni 

C
lu

st
er

-b
as

ed
 

th
re

sh
ol

di
ng

, t
 =

 2
.0

 
TF

C
E 

FDR FWE 

Figure 4.9: Clusters with significant negative correlations between FA and TMTB
score in prodromal HD participants in the right IFO using cluster-based thresholding
(t = 2.0) and TFCE methods with different types of correction for multiple compar-
isons. The TFCE test with FDR correction eliminated the least significant findings
in the right pars triangularis WM.
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Table 4.14: Percentages of the right IFO tract skeleton voxels that contained signif-
icant negative correlations between FA and TMTB score for prodromal HD partici-
pants.

Within Across Significant Regions with significant
Test tract tests voxels (%) differences (IFO#)
Voxel-based FDR FDR 0.00 None
thresholding FWE None 0.00 None

FWE Bonferroni 0.00 None
CBT, FWE None 6.53 6
t = 2.0 FWE Bonferroni 0.00 None
CBT, FWE None 0.00 None
t = 3.0 FWE Bonferroni 0.00 None
CBT, FWE None 0.00 None
t = 4.0 FWE Bonferroni 0.00 None
TFCE FDR FDR 55.62 1, 2, 3, 4, 5, 6, 7, 8

FWE None 13.16 6
FWE Bonferroni 0.00 None

Note: Type of permutation test and correction method within tract and across con-
trasts are noted. All clusters that remained after controlling for FWE with the
maximal statistic distribution remained after correction with FDR at a criterion of q
< 0.05. CBT = Cluster-based thresholding.

Table 4.15: Summary of demographic and clinical data for 40 controls from EMPMS
data set whose data was used to test age effect on RD in the right IFO.

Lower third of controls Upper third of controls
(Mean; SD (N)) (Mean; SD (N))

Age (years) 32.5; 5.3 (20) 58.9; 4.2 (20)
Education (years) 15.8; 1.7 (20) 15.3; 2.8 (20)
Gender 7M/13F (20) 5M/15F (20)
Site 024 (8) (7)
Site 027 (3) (1)
Site 045 (1) (1)
Site 050 (2) (0)
Site 054 (1) (0)
Site 061 (0) (1)
Site 073 (3) (1)
Site 120 (1) (5)
Site 144 (1) (4)
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Figure 4.10: FM with labeled regions. FM1 = Right medial orbitofrontal WM. FM2
= Posterior to right anterior cingulate WM. FM3 = Lateral to right rostral anterior
cingulate WM. FM4 = Inferior to right caudal anterior cingulate. FM5 = Lateral to
right superior frontal WM, medial to right rostral middle frontal WM. FM6 = Right
superior frontal WM. FM7 = Left medial orbitofrontal WM. FM8 = Posterior to left
anterior cingulate WM. FM9 = Lateral to left rostral anterior cingulate WM. FM10
= Inferior to left caudal anterior cingulate. FM11 = Lateral to left superior frontal
WM, medial to left rostral middle frontal WM.

ATR2 

ATR1 

ATR3 ATR4 

Figure 4.11: ATR with labeled regions. ATR1 = Thalamus. ATR2 = Lateral to
caudate. ATR3 = Lateral to rostral anterior cingulate WM. ATR4 = Lateral to
superior frontal WM, medial to rostral middle frontal WM. ATR5 = Superior frontal
WM.



www.manaraa.com

153

IFO1 IFO3 IFO2 

IFO5 

IFO4 

IFO6 

IFO8 

IFO7 

Figure 4.12: IFO with labeled regions. IFO1 = Medial orbitofrontal gyrus. IFO2
= Lateral orbitofrontal WM. IFO3 = Pars orbitalis WM. IFO4 = Pars triangularis
WM. IFO5 = WM lateral to the putamen, medial to the insular gyrus. IFO6 = WM
posterior to the putamen but does not terminate in the occipital or parietal lobe.
IFO7 = WM that projects to the occipital lobe. IFO8 = WM that projects to the
parietal lobe.
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UNC1 
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Figure 4.13: UNC with labeled regions. UNC1 = Medial orbitofrontal gyrus. UNC2
= Posterior portion of lateral orbitofrontal WM. UNC3 = Connecting point between
temporal and frontal lobe, lateral to insular gyrus. UNC4 = Lateral to amygdala,
medial to superior temporal gyrus. UNC5 = Superior temporal WM.
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Figure 4.14: Areas containing voxels where RD was significantly greater in the upper
third of controls ranked by age than the lower third (yellow and red) in the right IFO
tract skeleton (light blue), along with the mean RD across significant voxels for each
control grouped by lower and upper third age ranking. Mean RD values for plot did
not account for the covariates used in the unpaired two sample t-test (site of data
collection, gender, and years of education).
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FM, MD, C < H FM, AD, C < H FM, RD, C < M FM, RD, C < H 

ATR, MD, C < M ATR, MD, C < H ATR, AD, C < M ATR, AD, C < H 

ATR, RD, C < H IFO, FA, C > H IFO, MD, C < M IFO, MD, C < H 
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R L 

Figure 4.15: Differences in DTI scalars between controls and med/high CAP groups.
Highlighted regions (yellow and red) of each tract skeleton overlaid the tract skele-
ton (light blue) containing voxels with significant differences in DTI scalars between
controls (C) and medium (M) and high (H) CAP groups for EMPMS data. These
results were acquired with the TFCE method at 50,000 permutations and corrected
with FDR at a criterion of q < 0.05 and are displayed in radiologic convention.
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Table 4.16: Percentages of all tract skeleton voxels that contained significant mean
differences in DTI scalars between control (C) and CAP groups (L, M, H) and general
locations of these voxels for the EMPMS data.

DTI Significant Regions with significant
Tract Scalar Contrast voxels (%) differences
FM MD C < H 73.43 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

AD C < H 11.26 6, 8, 12
RD C < M 27.73 1, 2, 3, 4, 7, 8, 9, 10, 12

C < H 70.10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
LeftATR MD C < M 16.83 1, 2, 5

C < H 67.40 1, 2, 3, 4, 5
AD C < M 11.98 1, 2

C < H 37.45 1, 2, 3, 4, 5
RD C < H 49.50 1, 2, 3, 4, 5

LeftIFO FA C > H 9.49 2, 3, 6, 7
MD C < M 53.60 2, 3, 4, 5, 6, 7, 8

C < H 76.23 1, 2, 3, 4, 5, 6, 7, 8
AD C < H 55.47 1, 2, 3, 4, 5, 6, 7, 8
RD C < M 61.88 1, 2, 3, 4, 5, 6, 7, 8

C < H 79.36 1, 2, 3, 4, 5, 6, 7, 8
LeftUNC MD C < H 42.17 1, 2, 3, 4, 5

RD C < H 38.10 1, 2, 3, 4, 5
RightATR MD C < M 12.97 1, 2, 5

C < H 39.97 1, 2, 3, 4, 5
AD C < M 6.77 1, 2

C < H 25.30 1, 2, 3, 5
RD C < H 27.24 1, 2, 4, 5

RightIFO FA C > H 0.05 2
MD C < M 35.02 3, 5, 6, 7, 8

C < H 85.30 1, 2, 3, 4, 5, 6, 7, 8
AD C < H 63.20 1, 2, 3, 4, 5, 6, 7, 8
RD C < M 29.32 2, 3, 5, 6, 7, 8

C < H 79.77 1, 2, 3, 4, 5, 6, 7, 8
RightUNC MD C < H 63.74 1, 2, 3, 4, 5

AD C < H 61.37 1, 2, 3, 4, 5
RD C < H 49.48 1, 2, 3, 4, 5

Note: These results were acquired with the TFCE method at 50,000 permutations
and corrected with FDR at a criterion of q < 0.05.



www.manaraa.com

157

●

●
●

●

●

●

●

●

●
●●

●
●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●●

●

●

●

●●●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●●● ●
●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●
●

●●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●0.0009

0.0010

0.0011

0.0012

Control High
Group

M
D

MD in FM: C vs. H

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●●

●●
●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●0.0011

0.0012

0.0013

0.0014

Control High
Group

A
D

AD in FM: C vs. H

●

●
●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

● ●

●

●

● ●

●

●

●
●

●

●
●

●

●
●

●●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●
●

●

●

●

0.0007

0.0008

0.0009

0.0010

0.0011

0.0012

Control Med
Group

R
D

RD in FM: C vs. M

●

●●

●

●

●

●

●

●●
●

● ●

●
●

●

●
●

●

●

●

●
●

●

●
●
●

●

●●
●●

●
●

●

●●●
●

●

●

●

●

●

●
●

●●

●

●
●●

●

●●● ●
●

●●

●

●

●●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●●

●

●
●

●

● ●

●
● ●●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

0.0007

0.0008

0.0009

0.0010

0.0011

0.0012

Control High
Group

R
D

RD in FM: C vs. H

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

0.35

0.40

0.45

0.50

0.55

Control High
Group

FA

FA in L IFO: C vs. H

●

●
●

●
●●

●
●

●

●●

●●
●● ●

●●

●
● ●

●
●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

● ●

● ●
●●

●

●
●

● ●

●

●

●

●

●

●

●● ●
●

●

●

●
●

●

●

●
● ●

●●

●

●

●

●

●●

●●
● ●●

●

●

●

●

●

●
●

●

●

● ●
●

●●

0.0008

0.0009

0.0010

0.0011

Control Med
Group

M
D

MD in L IFO: C vs. M

●
●

●

●
●

●

●
●

●

●

●

●
●●

●
●

●●

●●●

●

●

●

●

●

● ●

●●●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●● ●

●

●

●

●●

●●

● ●●

●

●

●

●●

●

●

●

●
●

●●

0.0008

0.0009

0.0010

0.0011

Control High
Group

M
D

MD in L IFO: C vs. H

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●●

●
●

●●

●

●

●●

●
●

●

●

●
●
●●

●

●

●

●

●

●

● ●

●●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

0.0012

0.0013

0.0014

0.0015

Control High
Group

A
D

AD in L IFO: C vs. H

●
●

●

●
● ●

●
●

●

●
●

●

● ●●
●

●
●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

● ●

● ●

●

●
●

●
●

●

●
●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

7e−04

8e−04

9e−04

1e−03

Control Med
Group

R
D

RD in L IFO: C vs. M

●●
●

●
●

●

●
●

●

●
●

●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●

● ●

● ●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●●

7e−04

8e−04

9e−04

1e−03

Control High
Group

R
D

RD in L IFO: C vs. H

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●

●●

●●
●

●

●

●

●

●

●●

●

0.2

0.3

0.4

0.5

0.6

Control High
Group

FA

FA in R IFO: C vs. H

●●
●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●
●

●

●

●●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●●

●
●

● ●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●● ●●

●
●

0.0008

0.0009

0.0010

0.0011

Control Med
Group

M
D

MD in R IFO: C vs. M

●
●●

●●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●●

●

●
●

● ●●
●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0.0008

0.0009

0.0010

0.0011

Control High
Group

M
D

MD in R IFO: C vs. H

●

●

● ●

●●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●●

●●

●

●

●

●
●

●

●●
●

●●

●

●

●●

●

●
●

●

●

●●●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●● ●
●●●

●

●
●

●

●

●●

●●

●

●

●

●●

●
●

●

●●

●

●
●

0.00120

0.00125

0.00130

0.00135

0.00140

Control High
Group

A
D

AD in R IFO: C vs. H

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
● ●●
●●

●

●

●

●

●

●

●

●

●
●
●●

● ●

7e−04

8e−04

9e−04

Control Med
Group

R
D

RD in R IFO: C vs. M

●●
●

●
● ●

●
●

●

● ●

●

●

●● ●

●

●

●

●

●

●●

●

●●

●
●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

7e−04

8e−04

9e−04

Control High
Group

R
D

RD in R IFO: C vs. H

Figure 4.16: Plots of mean DTI scalars across significant voxels for controls versus
medium and high CAP group(s) in the FM and left and right IFO for EMPMS data.
These results were acquired with the TFCE method at 50,000 permutations and
corrected with FDR at a criterion of q < 0.05.
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Figure 4.17: Plots of mean DTI scalars across significant voxels for controls versus
medium and high CAP group(s) in the left and right ATR and UNC for EMPMS
data. These results were acquired with the TFCE method at 50,000 permutations
and corrected with FDR at a criterion of q < 0.05.
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FM, SDMT, (+) FA FM, SDMT, (-) MD FM, SDMT, (-) RD ATR, SDMT, (+) FA 

ATR, SDMT, (-) RD IFO, SDMT, (-) MD IFO, SDMT, (-) RD 

FM, S Color, (-) MD FM, S Color, (-) RD 

FM, S Color, (+) FA 

ATR, S Color, (-) MD ATR, S Color, (-) RD 

FM, S Word, (+) FA FM, S Word, (-) MD FM, S Word, (-) RD ATR, S Word, (-) MD 

ATR, S Word, (-) RD 

L R 

Figure 4.18: Images showing locations of correlations between DTI scalars and cog-
nitive variables, part 1. Highlighted regions (yellow and red) of each tract skeleton
overlaid the tract skeleton (light blue) containing voxels with significant positive (+)
and negative (-) correlations between DTI scalars and SDMT, Stroop Color (S Color),
and Stroop Word (S Word) variables for EMPMS data. These results were acquired
with the TFCE method at 50,000 permutations, corrected with FDR at a criterion
of q < 0.05, and are displayed in radiologic convention.
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FM, TMTA, (-) FA FM, TMTA, (+) MD IFO, TMTA, (+) MD FM, TMTA, (+) RD 

IFO, TMTA, (+) RD UNC, TMTA, (-) FA FM, TMTB, (-) FA FM, TMTB, (+) MD 

FM, TMTB, (+) RD ATR, TMTB, (-) FA ATR, TMTB, (+) MD FM, TMTB, (+) RD 

IFO, TMTB, (-) FA IFO, TMTB, (+) MD IFO, TMTB, (+) RD UNC, TMTB, (+) RD 

L R 

Figure 4.19: Images showing locations of correlations between DTI scalars and cog-
nitive variables, part 2. Highlighted regions (yellow and red) of each tract skeleton
overlaid the tract skeleton (light blue) containing voxels with significant positive (+)
and negative (-) correlations between DTI scalars and TMTA and TMTB variables
for EMPMS data. These results were acquired with the TFCE method at 50,000
permutations, corrected with FDR at a criterion of q < 0.05, and are displayed in
radiologic convention.
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Table 4.17: Percentages of all tract skeleton voxels that contained significant cor-
relations between DTI scalars and SDMT, Stroop Color, Stroop Word, and Stroop
Intermediate cognitive variables for prodromal HD participants.

Cognitive DTI Significant Regions with significant
variable scalar Contrast Tract voxels (%) correlations
SDMT FA Positive FM 44.60 1,2,3,4,7,8,11,12

LeftATR 17.91 3,4,5
RightATR 3.95 3
RightIFO 3.53 8

MD Negative FM 69.06 1,2,3,4,5,6,7,8,9,10,11,12
LeftIFO 55.20 1,2,3,4,5,6,7,8
LeftUNC 17.29 1,2,3,4
RightATR 68.09 1,2,3,4,5
RightIFO 36.11 2,3,4,5,6,7,8

RD Negative FM 59.94 1,2,3,4,5,6,7,8,9,10,11,12
LeftATR 51.26 2,3,4,5
LeftIFO 66.01 1,2,3,4,5,6,7,8
LeftUNC 16.74 1,2,3,4
RightATR 54.31 2,3,4,5
RightIFO 11.96 2,3,4,7,8

S Color FA Positive FM 45.68 1,2,3,4,6,7,8,11,12
LeftATR 33.73 1,2,4,5
RightIFO 8.20 2,3,4,8
RightUNC 4.90 2,3

MD Negative FM 46.32 1,2,3,4,5,6,7,9,10,11,12
LeftATR 14.06 3,4,5
RightATR 55.04 1,2,3,4,5

RD Negative FM 55.72 1,2,3,4,5,6,7,8,9,10,11,12
LeftATR 41.17 3,4,5
LeftIFO 16.88 2,3,4,5,6,7
RightATR 38.44 2,3,4

S Word FA Positive FM 39.16 1,2,3,4,6,7,8,11,12
AD Negative RightATR 7.66 4
MD Negative FM 55.67 1,2,3,4,5,6,7,8,9,10,11,12

LeftATR 51.32 1,2,3,4,5
LeftIFO 5.90 4,5
RightATR 59.07 1,2,3,4,5

RD Negative FM 51.53 1,2,3,4,5,6,7,8,9,10,11,12
LeftATR 50.00 1,2,3,4,5
RightATR 43.59 2,3,4

Note: These results were acquired with the TFCE method with 50,000 permutations
and corrected with FDR at a criterion of q < 0.05.
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Table 4.18: Percentages of all tract skeleton voxels that contained significant correla-
tions between DTI scalars and TMTA and TMTB cognitive variables for prodromal
HD participants.

Cognitive DTI Significant Regions with significant
variable scalar Contrast Tract voxels (%) correlations
TMTA FA Negative FM 39.93 1,2,3,4,5,7,8,10,11,12

LeftUNC 17.74 1,2,3
RightUNC 13.97 2,3

MD Positive FM 50.41 3,4,5,6,7,9,10,11,12
LeftIFO 51.22 1,2,3,4,5,6,7,8
LeftUNC 25.61 1,2,3,4
RightATR 51.73 1,2,3,4
RightIFO 42.90 2,3,4,5,6,7,8

RD Positive FM 46.85 1,2,3,4,5,7,9,10,11,12
LeftIFO 50.18 1,2,3,4,5,6,7,8
LeftUNC 28.42 1,2,3,4,5
RightATR 41.58 1,2,3,4
RightIFO 43.65 2,3,4,5,6,7,8

TMTB FA Negative FM 23.21 1,3,5,6,7,11,12
LeftATR 33.67 1,2,3,4,5
LeftIFO 6.44 1,2,5
LeftUNC 18.73 1,2,3,4
RightATR 33.68 1,2,3,4,5
RightIFO 6.93 2,4,8

MD Positive FM 41.79 3,5,6,9,10,11,12
LeftATR 23.77 1,2,4,5
LeftIFO 44.95 1,2,3,4,5,6,7,8
LeftUNC 47.60 1,2,3,4,5
RightATR 75.26 1,2,3,4,5
RightIFO 52.81 2,3,4,5,6,7,8

RD Positive FM 61.84 1,2,3,4,5,6,7,9,10,11,12
LeftATR 51.64 1,2,3,4,5
LeftIFO 40.11 1,2,3,4,5,6,7,8
LeftUNC 46.97 1,2,3,4,5
RightATR 79.37 1,2,3,4,5
RightIFO 45.14 2,3,4,5,6,7,8
RightUNC 33.28 1,2,3,4,5

Note: These results were acquired with the TFCE method with 50,000 permutations
and corrected with FDR at a criterion of q < 0.05.
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Figure 4.20: Plots of correlations between DTI scalars and cognitive variables, plots
part 1. Plots of SDMT, Stroop Color (S Color), Stroop Word (S Word), and Trail
Making Test A (TMTA) variables versus mean DTI scalars across clusters that cov-
ered more than 20% of a given tract skeleton for EMPMS data. These results were
acquired with the TFCE method at 50,000 permutations and corrected with FDR at
a criterion of q < 0.05.
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Figure 4.21: Plots of correlations between DTI scalars and cognitive variables, plots
part 2. Plots of Trail Making Tests A (TMTA) and B (TMTB) variables versus mean
DTI scalars across clusters that covered more than 20% of a given tract skeleton
for EMPMS data. These results were acquired with the TFCE method at 50,000
permutations and corrected with FDR at a criterion of q < 0.05.
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CHAPTER 5
LONGITUDINAL FIBER TRACKING STUDY

5.1 Introduction

The main goal of this study was to build upon past volume, DTI scalar, and

cross-sectional fiber tracking studies related to the frontal lobe in prodromal HD by

detecting longitudinal changes in major WM (WM) tracts terminating in the PFC

over a two year period. One of the longitudinal changes investigated in this study

was diffusivity along the WM tracts in the form of DTI scalars. Another type of

longitudinal change that was investigated was WM morphology, where WM volume

changes were encoded in a stationary velocity field and transported to a template

via Schild’s ladder. Once in template space, individual subject changes along WM

tracts in the form of log Jacobian values were investigated. To demonstrate how

changes in a subject across time is parallel transported to a template, two synthetic

image experiments were performed before deploying the parallel transport method

on real patient data. The purpose of this particular test was to show that changes

in synthetic subject data could be transported to a template. The objective behind

obtaining diffusivity and morphology changes simultaneously in the same tracts was

to better characterize WM pathology in prodromal HD.

5.2 Methods

This section describes two experiments: synthetic images and synthetic warp-

ing experiments.
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5.2.1 Synthetic images experiment

5.2.1.1 Synthetic images

The two dimensional (2D) image test case described here using circles and

ellipses of varying size was modeled after an experiment performed by Lorenzi et al.

that compared multiple implementations of parallel transport of stationary velocity

fields (SVFs) [185]. All 2D images were 256 x 256 mm in size with 1 x 1 mm pixels.

Brain images from an individual subject were represented with circles, where the

initial time point, I0, was a combination of black and white semi-circles whose radii

were both 21 mm, evenly surrounded by a gray circle that was 84 mm in diameter.

These circle dimensions were selected to create an object that was a third of the total

image size and could be centered. To simulate tissue atrophy around a fixed object

in the subject’s brain across time, three more circle images were created where the

volume of the gray circle decreased by 5% and the semi-circle volume increased by

5% (time points I1 through I3) relative to the initial time point with each subsequent

time increment (Figure 5.1). A template image (which is usually an atlas image that

represents the population in question), R0, was represented with the same black and

white semi-circles but with a surrounding gray ellipse. R0 was similar to I0, but its

gray top and bottom edges were stretched 10% of the total diameter of I0 to create a

gray ellipse and rotated 45 degrees to the right. The template shape was changed to

demonstrate that parallel transport can project volume changes in the subject data

to a different shape. Given that i is the time index, Ri, where i > 0, will refer to R0

that has been transformed with the parallel transported SVF transformation from I0
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to Ii. Warped template images, R1 through R3, were created manually from R0 by

decreasing its gray volume by 5% and increasing its semi-circle volume by 5% with

each subsequent time point to serve as verification images while testing the parallel

transport algorithm (Figure 5.1). Three-dimensional (3D) versions of the 2D test

images were also created in a similar manner.

R0 R1 R2 R3 

I0 I1 I2 I3 

Figure 5.1: 2D synthetic images for Schild’s ladder demonstration. 2D circle (syn-
thetic simulated subject data) and ellipse (synthetic simulated template and warped
template images) images with decreasing gray portions and increasing black and white
semi-circle portions to simulate tissue atrophy around a fixed object.

5.2.1.2 Symmetric demons and parallel transport

Stationary velocity fields (SVFs) from I0 to Ii (u) and from Ii to R0 (v) were

required for the parallel transport of changes in subject data to template (justification
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of the use of SVFs will be explained later in this section). These SVFs were derived

with the symmetric log-domain diffeomorphic demons image registration algorithm or

symmetric demons [186, 187]. Symmetric demons is a symmetric variant of Thirion’s

demons algorithm that works in the log-domain to provide an invertible mapping of

moving and fixed images in the form of a stationary velocity field [186, 187]. Cachier

et al. showed that the demons algorithm can be seen as an optimization of global

energy [188]. Vercauteren et al. symmetrized the optimization of global energy by

creating a symmetrized cost function for s, the starting spatial transformation or

vector field between fixed (F ) and moving (M) images [186, 187]:

sopt = argmin
x

(E(I0, I1, s) + E(I0, I1, s
−1)) (5.1)

Since transformations are computed in diffeomorphic space with a Lie group structure,

the diffeomorphism s can be computed by taking the exponential of a, the updated

velocity field, with the Lie group exponential operator at each iteration.

s = exp(a) (5.2)

a is in the vector space of the velocity fields and can be updated directly in the Lie

algebra by b in the log domain using a second order truncation of the Baker-Campbell-

Hausdorff (BCH) formula:

BCH(a, b) = log(exp(a) ◦ exp(b)) ≈ a+ b+
1

2
[a, b] +

1

12
[a, [a, b]]− 1

12
[b, [a, b]] (5.3)

Thus, to solve the symmetrized cost function, a is created by first computing both

forward (bforw, where F is the fixed image and M is the moving image) and backward
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(bback, where M is the fixed image and F is the moving image) update vector fields in

the log domain with the BCH approximation and averaging them at each iteration:

a← 1

2
Kdiff?(log(exp(a)◦exp(Kfluid?b

forw))−log(exp(−a)◦exp(Kfluid?b
back))) (5.4)

Update vector fields themselves are computed by minimizing the global energy be-

tween F and M , given current s [189]. Demons regularization is done by applying

a Gaussian convolution kernel to the update velocity fields before their exponentials

are composed with the current updated velocity field exponential [186, 187].

The Schild’s ladder construction is on a path defined by the Lie group expo-

nential of vectors. The SVF is an approximation of a small step of a time-varying

velocity field diffeomorphism or a set of vectors. Parallel transport can be used to

move these vectors through a geodesic on a manifold from one space to another and

preserve their original orientation once in the new space. The path between the initial,

I0, and subsequent time point, Ii, was defined with SVF u, while the path between

the initial time point and the template, R0 (T0 in Figure 5.2), was defined with SVF

v.

The symmetry of the Schild’s ladder construction allowed u to be diagonally

transported along the curve parameterized by v via composition to estimate Π v(u)

(Figure 5.2). Exp(Π vu) can be computed with the composition of the exponential of

the SVF from R0 to the half image between subject time points (or Exp(−v/2) given

parameterization by v) and the exponential of the SVF from the half image to R0

warped by Exp(Π vu) (or ρ). However, estimation of the half step image in the Schild’s

ladder construction was bypassed to avoid introducing bias to the construction and
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Figure 5.2: Schild’s Ladder parallelogram.

Source: M. Lorenzi, N. Ayache, X. Pennec, and Alzheimers Disease Neuroimaging
Ini- tiative, Schilds ladder for the parallel transport of deformations in time series of
images, Information Processing in Medical Imaging, vol. 22, pp. 463-74, 2011.

ρ was instead represented by the composition of Exp(u) and Exp(v/2) [190], leading

to:

Exp(Π (u)) = ρ ◦ Exp(−v/2) = Exp(v/2) ◦ Exp(u) ◦ Exp(−v/2) (5.5)

In this study, a custom tool was developed to implement the parallel transport of

u (Eq. 5.7) given SVFs u and v and a template image. The custom tool utilized

the itkVelocityFieldLieBracketFilter class [191]. Instead of directly computing the

compositions, the transport was evaluated directly in the Lie algebra using the BCH

formula truncated at the second order (like Eq. 5.3) [190]. The compositions of the

exponentials to produce the transport Π v(u) is expressed using the BCH formula as:

Π v(u) = BCH(v,BCH(u,−v)) (5.6)

and simplifies to:

Π v(u) = u+ [v, u] +
1

2
[v, [v, u]] (5.7)
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5.2.1.3 SVF estimation and parallel transport

Optimal parameters for estimating SVFs for the 2D synthetic image exper-

iment were investigated. images. The main goal of parameter exploration was to

ensure the creation of smooth mappings between images in a time series and the tem-

plate by minimizing sudden, drastic changes in velocity between neighboring voxels

to allow image deformation but prevent image folding. Smooth mappings between

time series and template images will also allow the creation of a smoother transported

SVF via the BCH formula so image information between time points is not lost during

transport. The following parameters were held constant for deriving the transforma-

tions u and v between the 2D and 3D synthetic images (described in Section 5.2.1)

with symmetric demons: number of iterations at each pyramid level of multi-scale

registration (three levels at 500, 400, and 300 iterations), SVF update rule (symmetric

log-domain), gradient used for computing the demons force (symmetrized), and use

of histogram matching. The following parameters for the symmetric log-demons reg-

istration algorithm were varied to optimize intensity-based correspondence and SVF

parallel transport: smoothing sigma for the velocity field (velSig), smoothing sigma

for the update field (upSig), maximum length of an update vector (maxStep), and

order of truncation of the Baker-Campbell Hausdorff (BCH) expansion (bch) used to

compose the existing and update fields. A base set of values recommended by Lorenzi

et al. [190] was used when varying each parameter: velSig = 2.0 mm, upSig = 1.0

mm, maxStep = 1.0 mm, and bch = 2. Since there was a range of parameters that

produced good intensity-based correspondence between moving and fixed images, the
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effect of changing parameters is most evident when looking at vector fields created

from the vector components stored in each voxel of the SVFs. Therefore, at each

voxel in an SVF, vectors created by multiplying the stored x- and y-components by

the unit vectors of the x- and y-axes were summed to create a new vector for visual-

ization in ParaView (http://www.paraview.org/Wiki/ParaView). A summary of all

parameters explored is shown in Table 5.1.

Table 5.1: Summary of parameters explored to optimize registrations between syn-
thetic test images using the symmetric demons registration tool.

Parameter (abbreviation) Values
Velocity field smoothing sigma (velSig) 0.0 - 4.0 mm
Update field smoothing sigma (upSig) 0.0 - 4.0 mm
Update vector maximum length (maxStep) 0.0 - 5.0 mm
BCH expansion truncation order (bch) 2 - 4

5.2.2 Synthetic warping experiment

5.2.2.1 Imaging data

Twenty-three healthy control participants who were scanned approximately

two years apart at the same site were selected for a synthetic warping experiment.

A summary of participant characteristics are listed in Table 5.2. Only T1-weighted

images from three Siemens PREDICT-HD sites were used for T1 atlas construction

and SVF derivation since WM tracts were not needed for this synthetic image exper-

iment. A description of imaging parameters for each site can be found in Table 4.7,
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Section 4.2.1.4.

Table 5.2: Summary of demographic and clinical data for healthy control participants
used in synthetic warping experiment, including number of participants from each of
the three Siemens scanner sites.

Time Point 1 (Mean; SD (N)) Time Point 2 (Mean; SD (N))
Age (years) 45.3; 10.7 (23) 47.3; 10.7 (23)
Educ (years) 15.4; 2.1 (23) 15.4; 2.1 (23)
Gender 7M/16F (23) 7M/16F (23)
Motor 4.9; 3.3 (23) 2.8; 3.4 (23)
SDMT 54.2; 8.3 (23) 57.1; 9.1 (23)
S Color 84.7; 12.9 (23) 87.4; 15.4 (23)
S Word 104.7; 15.2 (23) 109.0; 16.8 (23)
S Interference 48.0; 9.8 (23) 48.9; 7.8 (23)
TMTA 23.9; 9.3 (23) 20.4; 4.7 (23)
TMTB 55.8; 26.0 (23) 51.0; 22.6 (23)
Site 024 (16) (16)
Site 027 (1) (1)
Site 120 (6) (6)
Note: Educ = Education. Motor = Sum of all items of the UHDRS Motor Assessment
scale. SDMT = Symbol Digit Modalities Test. S = Stroop. TMTA = Trail Making
Test A. TMTB = Trail Making Test B.

5.2.2.2 Image pre-processing and atlas building

Structural image and DWI pre-processing and unbiased T1-weighted atlas con-

struction followed the methods described in Sections 4.2.2 and 4.2.3, respectively.

T1-weighted atlas construction here was slightly different than Section 4.2.3 as there

were two T1 images (first and second time points) for each subject, both of which

were weighted equally.
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5.2.2.3 Synthetic warping tool

The overall purpose of creating images with artificially dilated tissue is to see

if the parallel transport tool developed in this study is able to detect known image

changes. Thus, a tool was developed to create synthetic SVFs that would dilate

tissue in the shape of a sphere around a fiducial. The custom tool also converted

the synthetic SVF into a deformation field and applied the deformation to an input

image. Creation of a synthetic SVF began with a sphere shell of a user-defined radius

whose border values reflected the magnitude of desired tissue dilation around an input

fiducial. The sphere shell values were smoothed with a Gaussian filter that was the

size of the user-defined radius. The non-zero voxels in the sphere shell were then

used to compute vectors to the fiducial relative to a given voxel. The computed

vector components were then weighted by values of the Gaussian-smoothed sphere

shell image and assigned to an image with vector type voxels that was the same size

as the sphere shell image. This vector image served as the synthetic SVF that applied

artificial tissue dilations to an image around a fiducial.

For each of the 23 healthy control participants (described in Section 5.2.2),

a fiducial was placed in the left lateral ventricle anterior to the caudate in the T1-

weighted image acquired during the second scanning session. The fiducial and T1-

weighted image were then given to the synthetic SVF tool to create a T1-weighted

image whose left lateral ventricle was dilated into the surrounding WM and left

caudate. This area of the brain was dilated in order to simulate ventricle enlargement

and caudate atrophy seen in HD and possible WM atrophy that may be occurring in
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prodromal HD.

5.2.2.4 SVF estimation and parallel transport

Before acquiring the SVFs needed for parallel transport, a short parameter

exploration for warping T1 images with symmetric demons was performed. Since

the symmetric demons registration tool began to show instability at higher orders of

BCH approximation in the synthetic images experiment, only the second order (bch

= 2) was explored with T1 images. The following parameters were held constant for

deriving a SVF between a T1 image that had been rigidly aligned to a T1 template and

the T1 template: number of iterations at each pyramid level of multi-scale registration

(three levels at 1,000, 1,000, and 200 iterations), SVF update rule (symmetric log-

domain), gradient used for computing the demons force (symmetrized), and use of

histogram matching. velSig, upSig, and maxStep were explored (Table 5.3) while

monitoring for mean-squared error between moving and fixed images (MSE) and

minimum Jacobian determinant values below 0.1.

Table 5.3: Summary of parameters explored to optimize registrations between T1
image and template using the symmetric demons registration tool.

Parameter (abbreviation) Values
Velocity field smoothing sigma (velSig) 0.75 - 2.00 mm
Update field smoothing sigma (upSig) 0.50 - 1.00 mm
Update vector maximum length (maxStep) 0.20 - 2.00 mm
BCH expansion truncation order (bch) 2
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T1 images from both time points were first rigidly aligned to the T1 atlas

(R0) created from the 23 healthy control participants. SVFs (u and v) between time

point one (I0) and unaltered time point two (I1), time point one (I0) and artificially

dilated time point two (I1), and time point two (I1) to T1 atlas (R0) for each healthy

control participant were derived via symmetric demons and transported to the healthy

control T1 atlas (R0) (methods described in Section 5.2.1.2. Once in atlas space, the

transported SVF (Πv(u)) was converted to a deformation field, which was used to

compute a log Jacobian map with the ANTSJacobian tool [155]. Log Jacobian values

were computed by taking the logarithm of the determinant of the Jacobian matrix

(partial derivatives of the vector components with respect to each image axis) at each

voxel. Log Jacobian values close to zero indicated little volume change, while negative

values indicated volume decrease and positive values indicated volume increase. Mean

log Jacobian values derived from unaltered healthy control images and dilated healthy

control images were compared in randomise with age, years of education, gender, site

of data acquisition, and time between scans as covariates using randomise (these

p-value maps were corrected for multiple comparisons using FSL’s FDR tool with

a criterion of q < 0.05 [192]). Mean log Jacobian values derived from the dilated

healthy control images were tested to see if they were greater and less than zero with

one-sample t-tests using randomise [180, 193] (these p-value maps were corrected

for multiple comparisons using FSL’s FDR tool with a criterion of q < 0.01 [192]).

All statistical tests in randomise were performed using methods previously described

(Section 4.2.9.2): TFCE method, a hand-drawn mask covering the area containing
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the artificial dilations, and 10,000 permutations [177].

5.2.3 Longitudinal prodromal HD data analysis

5.2.3.1 Imaging and clinical data

Data from healthy control and prodromal HD participants have been analyzed

longitudinally to investigate diffusivity along WM tracts in the form of DTI scalars

and WM morphology along WM tracts in the form of log Jacobian values. Forty-

two healthy control and seventy-four prodromal HD participants who were scanned

twice approximately two years apart were selected for longitudinal data analysis. The

prodromal CAG-expanded participants were divided into three groups based on their

CAG-Age Product or CAP designation: low (n = 19; CAP < 287.16), medium (n =

26; 287.16 < CAP < 367.12), and high (n = 29; CAP > 367.12) [116]. A summary of

participant characteristics for the first and second time points are listed in Table 5.4.

T1-weighted, T2-weighted, and DWI scans were collected for each participant from

one of 12 PREDICT-HD sites, where both time points were acquired at the same site.

Imaging data was used to create T1 and DTI atlases along with major fiber tracts

terminating in the PFC. Scan information can be found in Section 4.2.1.4 in Tables

4.6 (DWI), 4.7 (T1), and 4.8 (T2).

5.2.3.2 Pre-processing, atlas building, fiber tracking

Multiple steps were involved in the longitudinal prodromal HD data analysis

including structural image and DWI pre-processing, T1 and DTI atlas construction,

whole brain tractography, fiber tract selection (FM, left and right ATR, left and right
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IFO, left and right UNC), and scalar image projection to fiber tract skeletons were

created using the methods described in Sections 4.2.2, 4.2.3, 4.2.5, 4.2.6, and A.1,

respectively. T1 and DTI atlas methods were slightly different than those in Section

4.2.5 as there were two T1 images (first and second time points) for each subject,

both of which were weighted equally. In addition to FA, MD, AD, and RD values,

log Jacobian values were projected to tract skeletons and analyzed to examine fiber

tract WM morphology.

5.2.3.3 Longitudinal change in DTI scalars

5.2.3.3.1 Mean rate of change among groups

The mean rate of change in DTI scalars (FA, MD, AD, and RD) over two

years in controls were compared to the mean rate of change for each CAP group

(control versus low, control versus medium, and control versus high) and current

group versus all groups with higher disease burden (controls versus low, medium, and

high; low versus medium and high; medium versus high) in each tract skeleton (FM,

left and right ATR, and left and right UNC). It was hypothesized that FA would

decrease faster and MD, AD, and RD would increase faster with greater disease

burden than controls. randomise, introduced in Section 4.2.9.2, compared the mean

rates of change with a linear mixed effects model using the TFCE method and 50,000

permutations [176, 173, 177]. Details on how the GLM for the linear mixed effects

model was implemented in randomise can be found in Section B.1. Correction for

multiple comparisons was done on the randomise p-value map outputs with the FDR
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tool available in FSL with a criterion of q < 0.05 [121, 192].

5.2.3.3.2 Correlations: change in DTI scalars, cognitive variables

randomise was also used to determine partial Pearson correlations between

change in DTI scalars (FA, MD, AD, and RD) and change in the following cog-

nitive variables for prodromal HD participants only: SDMT, Stroop Word, Stroop

Color, Stroop Inference, TMTA, and TMTB. For each statistical inference, the TFCE

method, tract skeleton masks, and 50,000 permutations were used. Instead of inputs

from each time point, difference images of the skeletonised DTI scalar images and

change in cognitive variables between the first and second time points were computed

for analysis with the difference in cognitive variables between first and second time

points. GLM setup for randomise was identical to methods described in Section A.3.

It was hypothesized that DTI scalars that increase with disease burden would pos-

itively correlate with changes in cognitive variables that also increase with disease

burden and vice versa. Thus, it was hypothesized that MD, AD, and RD would

increase with TMTA and TMTB time and decrease with SDMT and Stroop scores,

while FA would increase with SDMT and Stroop score and decrease with TMTA

and TMTB times. Correction for multiple comparisons was done on the randomise

p-value map outputs with the FDR tool available in FSL with a criterion of q < 0.05

[121, 192].
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5.2.3.4 Log Jacobian analysis on prodromal HD data

T1 images from both time points (I0 and I1) were first rigidly aligned to the

T1 atlas (R0) created from the 42 healthy control and 74 prodromal HD participants.

SVFs mapping the T1 image from time point one to two (u) and time point two

to the T1 atlas (v) were derived using the symmetric demons registration tool with

the following parameters: velSig = 1.1 mm, upSig = 1.1 mm, bch = 2, maxStep

= 0.5 mmm, three levels of multi-scale registration (400, 300, 300), symmetric log-

domain SVF update rule, symmetrised gradient for computing the demons force,

and histogram matching. SVFs mapping the change between time points were then

transported to the T1 atlas and converted to a deformation field as described in

Section 5.2.1.2. Log Jacobian maps were computed from the deformation fields [155]

and projected to tract skeletons using methods described in Section 4.2.8. Mean log

Jacobian values in each tract were compared between controls and each CAP group

and each group to all other groups with greater disease burden using randomise with

mean age, years of education, gender, site of data acquisition, and time between scans

as covariates. Mean log Jacobian values in tract skeletons were also correlated with

the change in cognitive variables. All statistical tests in randomise were performed

using methods previously described (Sections 4.2.9.2 and 5.2.3.3.2): TFCE method,

tract skeleton masks, and 10,000 permutations [180, 193, 177]. P-value maps resulting

from all t-tests were corrected for multiple comparisons using FSL’s FDR tool with

a criterion of q < 0.05 [192].
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5.3 Results

5.3.1 Synthetic images experiment

Synthetic 2D circle and ellipse images successfully demonstrated that the par-

allel transport tool developed here can translate scale and shape changes in a time

series of images to a template image. Nearly identical results were achieved with the

synthetic 3D circle and ellipse images. The main goal of parameter selection is to

ensure the creation of smooth mappings between images in a time series and the tem-

plate by minimizing sudden, drastic changes in velocity between neighboring voxels

to allow image deformation but prevent image folding. Smooth mappings between

time series and template images will also allow the creation of a smoother transported

SVF via the BCH formula so image information between time points is not lost dur-

ing transport. The parallel transport tool was able to transport shape and volume

changes from 5 to 15% of the original image to the template. The 15% volume change

case was the most challenging deformation with the most obvious visible differences

(and thus will be discussed here). Figure 5.3 shows the ideal parallel transport of

changes over time using images I0, I3, R0, and R3: 15% volume decrease of the gray

circle is transported into the template gray ellipse and the 15% volume increase of the

solid white and black semi-circles into the template solid white and black semi-circles.

Deformed images and SVF visualizations used to discuss velSig, upSig, and maxStep

will be limited to the mapping between I3 and R0 (or SVF v) since this mapping was

affected more by parameters than the I0 to I3 (or SVF u) mapping. SVF u will be

used to illustrate effects of the bch parameter.
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Figure 5.3: Overall scheme of parallel transport using ideal target 2D circles (I0 and
I3) and ellipses (R0 and R3).

Out of the four symmetric demons parameters that were explored (velSig,

upSig, maxStep, and bch), velSig was among the parameters that most drastically

impacted the success of parallel transport, which is measured by the degree of corre-

spondence between the warped template image and the target warped template image

(Figure 5.4). When velSig is set to 0 mm, smoothing the update velocity field alone

was not adequate for creating a smooth final mapping between I3 and R0, which in

turn adversely affected the transported SVF. velSig needed to be greater than 0 mm

to allow higher velocity vector components to exist in the final mapping and provide

enough smoothing. When velSig was increased to 3.0 mm, higher velocity vector com-

ponents were being removed, thus preventing the solid semi-circles from shrinking in

the I3 to R0 mapping and expanding enough in the transported SVF. However, at

higher values of velSig, preservation of the gray ellipse in the transported SVF was

improved. Deformations also only seemed to succeed when velSig was greater than
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upSig if velSig was less than 2.0 mm. Once velSig reached 2.0 mm, upSig did not

seem to an effect until it was greater than velSig. When upSig was increased to 4.0

mm, it actually improved gray ellipse shape in the transported SVF while expanding

the solid semi-circle area accurately (Figure 5.5).

maxStep was another parameter that drastically affected the outcome of the

transported SVF. The size differences between target and source images ranged ap-

proximately from 2-6 mm in distance. Therefore, a maxStep size of 0.3 mm was not

adequate to produce a successful mapping that encoded the necessary size changes

(Figure 5.6). maxStep became unstable at higher values, such as 5.0 mm, and ad-

versely affected the formation of the transported SVF.

Higher intensity-based correspondence was not achieved with higher orders of

BCH expansion truncation. SVFs derived with the base testing parameters and bch

values of 3 and 4 provided very poor mappings especially for SVF u (Figure 5.7). In

order to achieve reasonable mappings, more smoothing is required. Increasing upSig

to 4.0 mm while holding the other parameters steady (velSig = 2.0 mm, maxStep =

1.0 mm, bch = 3) produced results similar to those seen with the exact parameters

when bch was equal to 2 (not shown).

Figures 5.8 through 5.10 show the final results of the 2D synthetic image ex-

periment using the following parameters: velSig = 2.0 mm, upSig = 4.0 mm, maxStep

= 1.0 mm, and bch = 2.
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5.3.2 Synthetic warping experiment

Synthetic warping experiment is explained in this section.

5.3.2.1 Atlas building

Figure 5.11 displays the T1-weighted template constructed from data described

in Section 5.2.2 and whose space was used for the synthetic warping experiment.

5.3.2.2 Parameter exploration

Based on the short parameter exploration for symmetric demons on T1 im-

ages, the following parameters were chosen: velSig = 1.1 mm, upSig = 1.1 mm, and

maxStep = 0.5 mm. velSig had to be increased from 0.75 mm in order to prevent

negative Jacobian values from appearing in the transformation, but lower than 2.0

mm to preserve correspondence between moving and fixed images. maxStep had to

be kept below 1.0 mm to ensure minimum Jacobian values remained in a safe range

or above 0.1. As seen in the synthetic images experiment (Section 5.3.1), upSig did

not make a large impact on the minimum Jacobian value or moving and fixed image

correspondence.

5.3.2.3 Synthetic warping

Figure 5.12 displays a single healthy control participant’s T1-weighted image

before and after the application of the synthethic SVF. In the middle panel of Figure

5.12, the magnitudes of the vectors responsible for the artificial dilation of the left

ventricle are centered around the manually-placed fiducial.
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For illustrative purposes, all SVFs encoding the deformation from the first

time point to the artificially dilated second time point that were transported to the

T1 template were averaged and applied to the T1 template. Figure 5.13 displays the

original T1 template, average transported SVF, and T1 template after the application

of the average transported SVF. In the warped T1 template, the left ventricle is dilated

laterally and the caudate volume has decreased in the same area that contains higher

vector magnitudes in the averaged SVF image.

The unpaired t-test showed many voxels with mean log Jacobian values that

were significantly less in SVFs derived from the artificial dilations in comparison to

the unaltered images in the area where the artificial dilations were placed. In addition,

the one-sample t-test showed that WM surrounding the left ventricle contained voxels

whose log Jacobian values were significantly less than zero, supporting the fact that

the artificial dilations have been transported to the template (Figure 5.14).

5.3.3 Longitudinal prodromal HD analysis

5.3.3.1 Atlas building and fiber tracking

The longitudinal analysis has been conducted on the following T1-weighted

and DTI atlases. Figure 5.11 displays the T1-weighted template constructed from

data described in Section 5.2.2 and whose space was used for the synthetic warping

experiment. Figure 5.15 displayed the T1-weighted and DTI templates constructed

form data described in Section 5.2.3 and whose space was used for longitudinal anal-

yses.
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Figure 5.16 shows several views of the fiber tracts (FM, left and right ATR,

left and right IFO, and left and right UNC) derived from whole brain tractogram of

the DTI atlas overlaid on the T1-weighted template for the data described in Section

5.2.3. Different tracts are highlighted with different colors: left UNC (light blue),

right UNC (dark blue), FM (yellow), left IFO (light red), right IFO (dark red), left

ATR (light green), and right ATR (dark green).

5.3.3.2 Longitudinal change in DTI scalars

5.3.3.2.1 Mean rate of change among groups

Regions with significant differences in DTI scalar mean rate of change listed in

Table 5.5 are the same regions defined in Section 4.3.6 in Figures 4.10 through 4.13.

When comparing the high CAP group’s mean rate of change to those of other groups,

the high CAP group always had the highest mean rate of change or played a role in

increasing the mean rate of change. No findings were detected for FA. The significant

findings in the IFO were generally posterior to the frontal lobe areas except for those

with MD and AD. Specifically, the left and right IFOs both had faster mean increases

in MD, AD, and RD in the high CAP group in comparison to controls. Mean rates of

MD and RD increases in the medium CAP group were also less than the high CAP

group’s rate in both the left and right IFOs. Significantly faster mean rates of change

in all CAP groups (mean of low, medium, and high CAP) versus controls were seen

only in the right IFO for MD and AD. The FM had a faster mean increase in MD

for the high CAP group than the medium CAP group throughout the structure. The
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right UNC had faster mean increases in MD and RD for the high CAP group than the

medium CAP group in the area that connects the frontal and temporal lobes. The

left ATR was the only tract that seemed to exhibit a full progression of greater mean

rates of AD increase due to greater disease burden with significant findings in low

versus medium and high CAP groups, medium versus high CAP group, and controls

versus high CAP group. However, the only significant mean rate of change difference

for AD whose voxel percentage was above 10% was controls versus high CAP group

(with medium versus high CAP group for MD) (Figure 5.17).

5.3.3.2.2 Correlations: change in DTI scalars, cognitive variables

Correlations between change in both DTI scalars and cognitive variables were

investigated to support findings that suggest changes in DTI scalars are a reflection

disease burden. Regions with significant correlations between change in both DTI

scalars and cognitive variables listed in Table 5.6 are the same regions defined in

Section 4.3.6 in Figures 4.10 through 4.13. Significant correlations between change

in both DTI scalars and cognitive variables were again restricted to the scalars MD,

AD, and RD. Increases in TMTB time seemed to correlate with increases in DTI

scalars most commonly. Positive correlations between increase in TMTB time and

increase in MD, AD, and RD were seen throughout the FM and left and right ATRs.

In addition, MD and RD increased with TMTB time throughout the right IFO. The

second most common significant correlation was with decrease in Stroop Word score.

Decreases in Stroop Word score negatively correlated with increases in MD and RD
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throughout the FM and left and right ATRs, and to a lesser degree for increases

in AD in the FM. Decreases in Stroop Interference score negatively correlated with

increases in MD and RD in the left ATR and increases in AD in the right UNC.

Increases in TMTA time positvely correlated with increases in MD, AD, and RD in

the right ATR (Figure 5.18).

5.3.3.3 Log Jacobian analysis on prodromal HD data

Log Jacobian values in the left ATR for the high CAP group were less than

those in the medium CAP group in the area medial to the left rostral middle frontal

WM and lateral to the left superior frontal WM. As for correlations with log Jacobian

values and cognitive values, there was a significant negative correlation with change

in TMTB values in the left ATR and a positive correlation with change in Stroop

Color values in the right UNC.

5.4 Discussion

The main goal of this study was to build upon past volume, DTI scalar, and

cross-sectional fiber tracking studies related to the frontal lobe in prodromal HD by

detecting longitudinal changes in major WM tracts terminating in the PFC over a

two year period. One of the longitudinal changes investigated in this study was diffu-

sivity along the WM tracts in the form of DTI scalars. Another type of longitudinal

change that was investigated was WM morphology in the form of log Jacobian values

along the WM tracts. The objective behind obtaining diffusivity and morphology

changes simultaneously in the same tracts was to better characterize WM pathology
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in prodromal HD. For the DTI scalar analysis, an unbiased DTI atlas was built using

non-linear tranformations derived from T1-weighted images and were used to create

four major WM tracts terminating in the PFC: FM, left and right ATR, left and

right IFO, and left and right UNC. Tract skeletons were derived for each tract and

FA, MD, AD, and RD values were projected to each tract skeleton. The IFOs both

had faster mean increases in MD, AD, and RD in the high CAP group in comparison

to controls and faster mean increases in MD and RD in the high CAP group than

the medium. The FM had a faster mean increase in MD for the high CAP group

than the medium, while the right UNC had faster mean increases in MD and RD

for the high CAP group in comparison to the medium. As for the left ATR, AD

increased faster in the high CAP group versus controls and MD increased faster in

the high CAP group versus the medium. As for changes in DTI scalars tracking with

changes in cognitive variables, significant changes were restricted to MD, AD, and

RD for Stroop Interference, Stroop Word, TMTA, and TMTB. Increases in TMTB

time was the most common significant correlation, with findings in the FM, ATRs,

and right IFO. Decreases in Stroop Word score was the second most common signifi-

cant correlation, with findings in the FM and ATRs. Correlations with decreases in

Stroop Interference was seen in the left ATR and right UNC, while correlations with

increases in TMTA was seen in the right ATR. In regards to examining changes in

WM morphology, unbiased T1-weighted and DTI atlases were built for the analyses.

A parallel transport tool was then developed to transport longitudinal changes to

an atlas space. The parallel transport tool was first demonstrated on synthetic 2D
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images (tranport volume decrease of a circle to an ellipse) and an actual T1-weight

image with an artificially dilated ventricle (transport artifical warping to T1-weighted

template). Then, the parallel transport tool was used to transport changes over a two

year period for 42 controls and 74 prodromal HD participants. Log Jacobian values

in the high CAP group were lower than the medium CAP group in the area medial to

the left rostral middle frontal WM and lateral to the left superior frontal WM. There

were minor significant correlations between log Jacobian values and changes in cog-

nitive variables. Together, the gradient of effects seen in the differences in DTI scalar

values and their correlations with cognitive variables that have a documented ability

in detecting cognitive deficits in prodromal HD participants suggest that DWI can

provide reliable markers of disease progression. Specifically, the results of this study

suggest that monitoring MD and RD in the right IFO while measuring TMTB time

could serve as a reliable biomarker to monitor disease progression in the prodromal

HD stage.

The clinical implications of the longitudinal changes that were detected in

this study were much like those discussed in the cross-sectional fiber tracking study

(Chapter 4). In both cross-sectional and longitudinal studies, differences in MD, AD,

and RD were more commonplace than FA. The only difference is the longitudinal

results now show that DTI scalar values are changing at different rates over time

and the high CAP group is usually changing the fastest. Such information would

be useful in a clinical trial since information on rate of DTI scalar change could be

used to monitor treatment efficacy. The correlations between changes in cognitive
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variables and changes in DTI scalars support the findings between groups because

they link poorer cognitive performance with changes in diffusivity that are associated

with greater disease burden.

The parallel transport demonstration with 2D synthetic images was successful

in illustrating how changes over time can be transported to a template. On the other

hand, the average SVF of all transported SVFs derived from artifically dilated T1-

weighted images did not deform the T1-weighted template as dramatically as hoped

(Figure 5.13). Before SVFs transforming time point 1 to artifically dilated time point

2 were transported to the template, the output image from each SVF derivation was

visually inspected to ensure the registration was successful. Correspondence between

moving and fixed images was normally acceptable. Therefore, the average SVF that

did not warp the T1-weighted template as dramatically as hoped was probably caused

by not artificially dilating each time point 2 image in the same area. The slight mis-

alignment of the artificial dilations may have prevented all vectors from accumulating

at the border of the left ventricle, thus decreasing the degree of deformation in the

average SVF. This may have also caused significantly less log Jacobian values in the

images with artificial dilations in comparison to the unaltered images within the left

ventricle, in addition to the WM and caudate bordering the ventricle.

One of the limitations of this study was again the use of a tensor-based anal-

ysis, which has been discussed in Chapters 3 and 4. However, the main limitation

of this study was perhaps using parallel transport on WM tracts and analyzing log

Jacobian values to examine morphology was not an optial experimental design for
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WM tracts terminating in the PFC. When doing a literature search of manuscripts

that have used parallel transport to study longitudinal changes in brain structures,

the region of interest is usually a structure with clearly defined borders. The WM

tracts in this study did not have borders on the majority of their surfaces because

most of these tracts are running parallel to other WM tracts. WM tracts only gain

borders when adjacent to another tissue type or are within a gyrus. This may ex-

plain why the only significant finding in the log Jacobian analysis was in the portion

of the left ATR that was about to enter the superior frontal gyrus (Figure 5.19).

Another aspect of this study that could have hindered the success of being able to

distinguish differences between groups with log Jacobian values is the frontal lobe is

generally a highly variable region even in normal anatomy. Although an atlas space

that was representative of the population in question was constructed for this study,

registration algorithms can only deform images so much before tissue begins to fold

inappropriately.

In order to possibly improve the outcome of using parallel transport to evaluate

WM tract morphology, several adjustments could be made. First, the derivation of

the SVF from time point 2 to the template could be optimized futher to increase

correspondence through parameter exploration or an image normalization step to

enhance any border the WM tract may have. Another improvement would be to take

advantage of the properties of the SVF by normalizing all transported SVFs to a

specific time range before deriving log Jacobian maps for analysis. Also, instead of

performing statistics on log Jacobian values, perhaps the eigenvalues of the Jacobian
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matrix should be explored. Finally, perhaps these methods should optimized on less

variable WM tracts that have well-defined borders such as the corpus callosum.

Future directions include repeating this analysis using higher order models of

diffusion to obtain better defined WM tracts and repeating the DTI scalar analysis

to other regions of interest relevant to prodromal HD.

5.5 Conclusion

Together, the gradient of effects seen in the differences in DTI scalar values and

their correlations with cognitive variables that have a documented ability in detecting

cognitive deficits in prodromal HD participants suggest that DWI can provide reliable

markers of disease progression. Specifically, the results of this study suggest that

monitoring MD and RD in the right IFO while measuring TMTB time could serve

as a reliable biomarker to monitor disease progression in the prodromal HD stage.
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Table 5.4: Demographic and clinical data from the first and second time points for
healthy control and prodromal HD participants for longitudinal data analysis, includ-
ing number of participants from each site in each group.

Cont (Mean; Low (Mean; Med (Mean; High (Mean;
SD (N)) SD (N)) SD (N)) SD (N))

(1) Age (years) 47.1; 11.0 (42) 33.6; 10.4 (19) 42.8; 10.6 (26) 47.7; 11.0 (29)
(2) Age (years) 49.1; 11.0 (42) 35.6; 10.4 (19) 44.8; 10.6 (26) 49.7; 11.0 (29)
Educ (years) 15.5; 2.1 (42) 14.8; 2.2 (19) 14.7; 2.1 (26) 14.7; 3.3 (29)
Gender 13M/29F (42) 5M/14F (19) 6M/20F (26) 8M/21F (29)
(1) Motor 4.7; 4.5 (42) 4.9; 5.2 (19) 6.5; 3.9 (26) 9.3; 8.5 (29)
(2) Motor 3.2; 5.3 (42) 2.7; 2.6 (19) 6.4; 6.1 (26) 10.3; 11.7 (29)
(1) SDMT 53.5; 10.0 (42) 57.2; 10.2 (19) 53.2; 8.7 (26) 48.7; 8.4 (29)
(2) SDMT 55.5; 11.0 (42) 57.5; 12.0 (19) 54.9; 10.0 (26) 48.4; 8.3 (29)
(1) S Color 81.7; 14.2 (42) 84.1; 8.8 (19) 78.2; 10.1 (26) 76.1; 11.3 (29)
(2) S Color 84.9; 15.2 (42) 85.1; 11.3 (19) 79.8; 11.7 (26) 73.1; 14.0 (29)
(1) S Word 101.6; 17.8 (42) 106.3; 13.9 (19) 99.0; 13.9 (26) 94.6; 15.4 (29)
(2) S Word 103.5; 18.0 (42) 105.3; 9.9 (19) 95.7; 16.9 (26) 90.8; 18.5 (29)
(1) S Inter 47.1; 10.0 (42) 52.5; 12.6 (19) 47.0; 10.8 (26) 43.9; 8.4 (29)
(2) S Inter 47.8; 8.6 (42) 53.3; 14.1 (19) 47.1; 11.2 (26) 43.3; 8.0 (29)
(1) TMTA 23.9; 8.9 (42) 21.9; 7.1 (19) 22.2; 7.6 (26) 24.7; 7.4 (29)
(2) TMTA 22.2; 9.1 (42) 19.2; 4.4 (19) 22.0; 8.0 (26) 24.9; 8.9 (29)
(1) TMTB 53.2; 23.0 (42) 45.7; 13.4 (19) 49.9; 16.9 (26) 59.7; 19.8 (29)
(2) TMTB 50.8; 25.1 (42) 42.7; 13.3 (19) 47.8; 24.8 (26) 58.6; 17.0 (29)
Site 002 (1) (0) (0) (0)
Site 024 (22) (8) (14) (15)
Site 027 (2) (0) (0) (1)
Site 028 (0) (0) (0) (1)
Site 045 (2) (1) (1) (1)
Site 050 (0) (0) (0) (1)
Site 054 (1) (2) (4) (4)
Site 061 (0) (0) (1) (0)
Site 073 (0) (1) (0) (2)
Site 120 (14) (6) (6) (3)
Site 144 (0) (1) (0) (0)
Site 177 (0) (0) (0) (1)
Note: Sites 024, 027, 045, 050, 073, 120, 144 and 177 have Siemens vendor scanners;
sites 002, 028 and 061 a Philips vendor scanner; and site 054 a GE vendor scanner.
Cont = Controls. Med = Medium. Educ = Education. Motor = Sum of all items of
the UHDRS Motor Assessment scale. SDMT = Symbol Digit Modalities Test. S =
Stroop. Inter = Interference. TMTA = Trail Making Test A. TMTB = Trail Making
Test B.
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Figure 5.4: Velocity sigma parameter effect on symmetric demons while holding other
registration parameters constant. Parameters: upSig = 1.0 mm, maxStep = 1.0 mm,
and bch = 2. The first row consists of the ideal results for the transformation being
derived. The first and third columns are I3 deformed into the space of R0 and R0

deformed by the transported SVF, respectively. The second and fourth columns
are the SVF (target-to-source mapping) from R0 to I3 and the transported SVF,
respectively. Vector magnitude is scaled from low to high with blue to red. Vector
size has been scaled up for illustrative purposes.
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Figure 5.5: Update sigma parameter effect on symmetric demons while holding other
registration parameters constant. Parameters: velSig = 2.0 mm, maxStep = 1.0
mm, and bch = 2. The first row consists of the ideal results for the transformation
being derived. The first and third columns are I3 deformed into the space of R0 and
R0 deformed by the transported SVF, respectively. The second and fourth columns
are the SVF (target-to-source mapping) from R0 to I3 and the transported SVF,
respectively. Vector magnitude is scaled from low to high with blue to red. Vector
size has been scaled up for illustrative purposes.
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Figure 5.6: Maximum step length parameter effect on symmetric demons while hold-
ing other registration parameters constant. Parameters: velSig = 2.0 mm, upSig =
1.0 mm, and bch = 2. The first row consists of the ideal results for the transformation
being derived. The first and third columns are I3 deformed into the space of R0 and
R0 deformed by the transported SVF, respectively. The second and fourth columns
are the SVF (target-to-source mapping) from R0 to I3 and the transported SVF, re-
spectively. Vector magnitude is scaled from low to high with blue to red. Vector size
has been scaled up for illustrative purposes.
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Figure 5.7: Baker-Campbell-Hausdorff truncation order effect on symmetric demons
while holding other registration parameters constant. Parameters: velSig = 2.0 mm,
upSig = 1.0 mm, and maxStep = 1.0 mm. The first row consists of the ideal results
for the transformation being derived. The first and third columns are I3 deformed
into the space of R0 and R0 deformed by the transported SVF, respectively. The
second and fourth columns are the SVF (target-to-source mapping) from R0 to I3

and the transported SVF, respectively. Vector magnitude is scaled from low to high
with blue to red. Vector size has been scaled up for illustrative purposes.
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Figure 5.8: 2D Schild’s ladder demonstration using test images with 5 percent volume
changes (I1 and R1) from baseline. Parameters: velSig = 2.0 mm, upSig = 4.0 mm,
maxStep = 1.0 mm, and bch = 2. Vector magnitude is scaled from low to high with
blue to red.
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Figure 5.9: 2D Schild’s ladder demonstration using test images with 10 percent vol-
ume changes (I2 and R2) from baseline. Parameters: velSig = 2.0 mm, upSig = 4.0
mm, maxStep = 1.0 mm, and bch = 2. Vector magnitude is scaled from low to high
with blue to red.
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Figure 5.10: 2D Schild’s ladder demonstration using test images with 15 percent
volume changes (I3 and R3) from baseline. Parameters: velSig = 2.0 mm, upSig =
4.0 mm, maxStep = 1.0 mm, and bch = 2. Vector magnitude is scaled from low to
high with blue to red.
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Figure 5.11: T1-weighted atlas for longitudinal control experiment.

(A) (B) (C) 

Figure 5.12: Synthetic SVF applied to T1-weighted image. (A) T1-weighted image
from the second scanning session for a healthy control participant. (B) Image of vector
magnitudes in the synthetic SVF. (C) Same image as the left panel after application of
synthetic SVF. Artificial dilation can be seen around in the left ventricle and caudate,
surrounding the fiducial.
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(A) (B) (C) 

Figure 5.13: Average synthetic SVF applied to T1 atlas. (A) T1-weighted atlas made
from healthy control participants before application of average synthetic transported
SVF. (B) Image of vector magnitudes in the average transported synthetic SVF. Note
the higher magnitudes surrounding the left ventricle. (C) Same image as the left panel
after application of average synthetic transported SVF. Artificial dilation can be seen
around in the left ventricle and caudate.

(A) (B) 

Figure 5.14: Areas with significantly negative log Jacobian values. Axial slices con-
taining showing areas of the SVFs whose log Jacobian values were (A) greater before
the application of artifical warping (corrected for multiple comparisons using FDR
with a criterion of q < 0.05) and (B) significantly less than zero colored (corrected for
multiple comparisons using FDR with a criterion of q < 0.01). Note that the voxels
containing significantly negative log Jacobian values are in the WM bordering the left
ventricle reflecting volume contraction in those areas.
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Figure 5.15: T1-weighted and DTI atlases for longitudinal analyses.

Figure 5.16: All fiber tracts overlaid T1-weighted template for longitudinal analysis.
Different tracts are highlighted with different colors: left UNC (light blue), right UNC
(dark blue), FM (yellow), left IFO (light red), right IFO (dark red), left ATR (light
green), and right ATR (dark green).
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R L 

FM, MD, M < H ATR, AD, C < H ATR, AD, L < MH 

ATR, AD, M < H 

ATR, MD, M < H 

IFO, AD, C < H 

IFO, MD, C < H 

IFO, RD, C < H 

IFO, MD, M < H 

IFO, RD, M < H IFO, AD, C < LMH 

IFO, MD, C < LMH 

UNC, MD, M < H UNC, RD, M < H 

Figure 5.17: Differences in DTI scalar change over time among groups. Highlighted
regions (yellow and red) of each tract skeleton overlaid the tract skeleton (light blue)
containing voxels with significant differences in DTI scalar change over a two year
period between controls (C) and individual CAP groups (L = low, M = medium, H
= high) or between the current group and subsequent groups. These results were
acquired with the TFCE method at 50,000 permutations, corrected with FDR at a
criterion of q < 0.05, and are displayed in radiologic convention.
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Table 5.5: Percentages of all tract skeleton voxels that contained significant differences
in change of DTI scalars between control (C) and CAP groups (L, M, H) and between
each group and all subsequent groups over a two year period.

DTI Significant Regions with significant
Tract Scalar Contrast voxels (%) differences
FM MD M < H 49.72 2,3,4,5,6,7,8,9,10,11,12
LeftATR MD M < H 19.46 2,3,4

AD C < H 32.89 1,2,3,4
L < MH 1.94 3
M < H 0.21 5

LeftIFO MD C < H 41.21 4,6,7,8
M < H 36.44 4,5,6,7,8

AD C < H 36.36 2,4,5,6,7,8
RD C < H 27.83 5,6,7,8

M < H 32.73 3,6,7,8
RightIFO MD C < H 37.39 6,7,8

C < LMH 16.84 6,7
M < H 46.42 2,3,4,5,6,7,8

AD C < H 24.38 2,5,6,7,8
C < LMH 25.53 2,6,7,8

RD C < H 18.56 6,7,8
M < H 40.48 3,5,6,7,8

RightUNC MD M < H 10.78 3,4
RD M < H 16.48 3,4

Note: General locations of the significant voxels are noted. These results were ac-

quired with the TFCE method at 50,000 permutations and corrected with FDR at a

criterion of q < 0.05.
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ATR, S Inter, (-) MD ATR, S Inter, (-) RD UNC, S Inter, (-) AD FM, S Word, (-) MD 

FM, S Word, (-) AD FM, S Word, (-) RD ATR, S Word, (-) MD ATR, S Word, (-) RD 

ATR, TMTA, (+) MD ATR, TMTA, (+) AD ATR, TMTA, (+) RD FM, TMTB, (+) MD 

FM, TMTB, (+) AD FM, TMTB, (+) RD ATR, TMTB, (+) MD ATR, TMTB, (+) AD 

ATR, TMTB, (+) RD IFO, TMTB, (+) MD IFO, TMTB, (+) RD 

R L 

Figure 5.18: Correlations between change in DTI scalars and cognitive variables.
Highlighted regions (yellow and red) of each tract skeleton overlaid the tract skeleton
(light blue) containing voxels with significant correlations between DTI scalar and
cognitive variable change over a two year period in prodromal HD participants. These
results were acquired with the TFCE method at 50,000 permutations, corrected with
FDR at a criterion of q < 0.05, and are displayed in radiologic convention.
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Table 5.6: Percentages of all tract skeleton voxels that contained significant correla-
tions between change of DTI scalars and change in cognitive variables in prodromal
HD participants and change in cognitive variables and change in cognitive variables
and change in cognitive variables over a two year period.

Cognitive DTI Significant Regions with significant
variable Scalar Contrast Tract voxels (%) differences
S Inter MD Negative LeftATR 18.98 1,4,5

AD Negative RightUNC 16.36 3,4
RD Negative LeftATR 12.40 4

S Word MD Negative FM 45.86 1,3,4,5,6,7,9,10,11,12
LeftATR 32.62 1,3,4,5
RightATR 32.25 2,3,4,5

AD Negative FM 12.98 1,4,6,7,9,10,11
RD Negative FM 38.97 2,3,4,5,6,7,8,9,10,11,12

LeftATR 27.49 1,3,4
RightATR 27.76 1,2,3,4

TMTA MD Positive RightATR 13.22 4
AD Positive RightATR 6.81 4
RD Positive RightATR 10.05 4

TMTB MD Positive FM 67.24 2,3,4,5,6,7,8,9,10,11,12
LeftATR 54.43 1,2,3,4
RightATR 51.55 1,2,3,4
RightIFO 63.37 1,2,3,4,5,6,7,8

AD Positive FM 55.72 1,2,3,4,5,6,7,8,9,10,11,12
LeftATR 24.38 1,2,3
RightATR 38.07 1,3,4

RD Positive FM 63.85 1,2,3,4,5,6,7,8,9,10,11,12
LeftATR 46.05 1,2,3,4
RightATR 43.23 2,3,4
RightIFO 36.90 2,3,4,5,6,7,8

Note: General locations of the significant voxels are noted. These results were ac-
quired with the TFCE method at 50,000 permutations and corrected with FDR at a
criterion of q < 0.05.
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ATR, logJac, M < H 

Figure 5.19: Significant differences between log Jacobian values between controls and
CAP groups.
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CHAPTER 6
CONCLUDING REMARKS

The purpose of this thesis was to address the logistical complexities of per-

forming multi-site longitudinal diffusion-weighted (DWI) studies in clinical trials. The

key processing components to accomplish a robust DWI processing system (DICOM

conversion, automated quality control, unbiased atlas construction, fiber tracking,

and statistical analysis) have been addressed in this work. Tools that solve DICOM

compatibility and quality control issues of mulit-site data have been applied to DWI

data from healthy controls collected at multiple sites in a DTI scalar reliability anal-

ysis. A mean DTI scalar analysis has been performed on a region of interest to

investigate how changes in its diffusivity could explain phenotypic characteristics of

a neurodegenerative disease. The mean DTI scalar analysis has been extended with

cross-sectional and longitudinal fiber tracking analyses that have been performed on

four major WM tracts terminating in the region of interest from the DTI scalar anal-

ysis. Significant differences in diffusivity have been found at each level of analysis

throughout regions of interest among separate groups of the neurodegenerative dis-

ease population. In addition, multiple neuropsychological cognitive variables that

have a documented ability to track disease progression of the neurodegenerative dis-

ease, strongly correlated with many of the DTI scalars in each tract. Collectively, the

results of this thesis demonstrates how to use DWI as a reliable biomarker to monitor

neurodenerative disease progression in white matter longitudinally using data from

multiple sites.
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APPENDIX A
CROSS-SECTIONAL STUDIES SUPPLEMENTAL MATERIAL

A.1 Fiber tract selection

A.1.1 Uncinate fasciculus

Coronal and axial views were the most important views for isolating tracts

that represented the UNC. In the coronal view, the selection box was resized to

encompass the temporal lobe (Figure A.1). Then, all fibers projecting from the

temporal lobe but not into the frontal lobe were removed (Figure A.2). Only fibers

with curved projections from anterior temporal lobe extending to the medial and

lateral orbitofrontal cortex were included in tracts that represented the UNC (Figure

A.3) [143, 167, 147, 168].

A.1.2 Forceps minor

Using the coronal and axial views for guidance, a coronal plane anterior to the

genu of the corpus callosum that passed through the frontal lobe was placed in one

hemisphere to initially select the tracts of the FM (Figure A.4). Another plane was

placed in the same position in the contralateral hemisphere to select tracts that exited

the frontal lobe and curved into the contralateral hemisphere (Figure A.5). A final

plane was placed posterior to the genu to exclude tracts that passed through thefirst

two planes but extended outside the frontal lobe (Figure A.6). [143, 167, 147, 168].
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A.1.3 Inferior fronto-occipital fasciculus

A coronal plane was placed between the posterior edge of the cingulum and

the parieto-occipital sulcus to select the occiptal extensions of the IFO in a single

hemisphere. This initial coronal plane does not extent inferiorly beyond the bottom

edge of the occipital lobe or a few centimeters above the posterior edge of the cingulum

bundle (Figure A.7). A second coronal plane was placed anterior to the anterior edge

of the cingulum bundle extended through the entire frontal lobe in the ipsilateral

hemisphere of the first coronal plane to select tracts that extended from the occipital

lobe to the frontal lobe (Figure A.8). Tracts that terminated too superiorly in the

frontal lobes (outside of the orbitofrontal area) were removed (Figure A.9) [143, 167,

147, 168].

A.1.4 Anterior thalamic radiations

A selection box was first placed around the entire thalamus for a given hemi-

sphere to isolate all tracts passing through the thalamus (Figure A.10). A coronal

plane was then placed in the middle of the genu in the ipsilateral hemisphere to select

the ATR (Figure A.11). Fibers that did not emanate from the mediodorsal nuclei of

the thalamus or pass through the anterior limb of the internal capsule were removed

(Figure A.12) [143, 167, 147, 168].

A.2 GLM for randomise: t-test

The GLM for the t-tests were set up using two files required by randomise.

The first file consisted of the design matrix, where each group (control, low, medium,
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Figure A.1: UNC: First selection box is sized in the coronal and axial views to
encompassed the temporal lobe.

Figure A.2: UNC: Removal of fibers projecting from the temporal lobe but not into
the frontal lobe.

and high CAP group) was represented by its own column and membership was coded

as 1. Multiple sites of data collection were represented by separate columns with
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Figure A.3: UNC: Final tract after selection of fibers extending from the anterior
temporal lobe to the medial and lateral orbitofrontal cortex.

Figure A.4: FM: First selection box was placed anterior to the genu of the corpus
callosum and passed through the frontal lobe in one hemisphere.

membership coded as 1, while gender used a single column with female coded as

0. All covariates (age, years of education, gender, and site of data collection) were
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Figure A.5: FM: Contralateral plane anterior to the genu of the corpus callosum.

Figure A.6: FM: Final tract after the exclusion of fibers that were located posterior
to the frontal lobe.

demeaned by subtracting the mean of the column from each value. Below is an

example design matrix that codes three groups, each with three participants whose
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Figure A.7: IFO: First coronal plane used to select fibers passing through the occipital
lobe.

Figure A.8: IFO: Second coronal place used to select fibers that extended anteriorly
from the occipital lobe.
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Figure A.9: IFO: Final tract after the removal of fibers terminating outside the
orbitofrontal area.

Figure A.10: Anterior thalamic radiations: First selection box used to isolate all fibers
emanating from thalamus.

data was collected at one of two sites. In this case, age is an additional covariate.

randomise required some header information: NumWaves (number of columns in
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Figure A.11: Anterior thalamic radiations: Coronal plane used to select fibers pro-
jecting anteriorly from the thalamus.

Figure A.12: Anterior thalamic radiations: Final tract after the removal of fibers
that did not emanate from the mediodorsal nuclei of the thalamus or pass through
the anterior limb of the internal capsule.
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design matrix), NumPoints (number of subjects), and Matrix [180, 193].

/NumWaves 6

/NumPoints 9

/Matrix

1 0 0 0.44444 -0.44444 -11.66667

1 0 0 -0.55556 0.55556 -29.66667

1 0 0 -0.55556 0.55556 -15.66667

0 1 0 0.44444 -0.44444 23.33333

0 1 0 0.44444 -0.44444 39.33333

0 1 0 -0.55556 0.55556 10.33333

0 0 1 0.44444 -0.44444 -26.66667

0 0 1 0.44444 -0.44444 12.33333

0 0 1 -0.55556 0.55556 -1.66667

The headers for each of the columns for the example design matrix are as

follows and were not placed in the design matrix file used to run randomise.

Group1 Group2 Group3 Site1 Site2 Age Demean

The second file used in setting up the GLM for t-tests was called the contrast

file. Using the above example, to test whether the dependent variable of Group 1

is significantly greater than that of Group 2, the contrast file would be coded below

[180, 193]. Group 1 is set to 1, Group 2 is set to -1, and all nuisance variables are set

to 0. Required header information for the contrast file includes NumWaves (number

of columns in the contrast file, which is the same as the design matrix), NumContrasts
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(number of rows in the contrast matrix), and Matrix (placed before contrast rows).

The headers for each of the columns in the example contrast matrix were the same

as the design matrix and were not placed in the contrast matrix file used to run

randomise. For this study, DTI scalar values in the tract skeletons of controls were

tested to be greater (FA) or less than (MD, AD, RD) those of the CAP groups with

t-tests.

/NumWaves 6

/NumContrasts 1

/Matrix

1 -1 0 0 0 0

A.3 GLM for randomise: correlation analysis

In the design matrix, the groups, sites, and age columns are the same as those

used in the t-test, with an additional cognitive variable (demeaned) column. Below is

an example design matrix that codes nine participants, each with three participants

whose data was collected at one of two sites with age as a covariate. The last column

is the demeaned cognitive variable [180, 193].

/NumWaves 7

/NumPoints 9

/Matrix

1 0 0 0.44444 -0.44444 -11.66667 -0.77778

1 0 0 -0.55556 0.55556 -29.66667 41.22222
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1 0 0 -0.55556 0.55556 -15.66667 -44.77778

0 1 0 0.44444 -0.44444 23.33333 -9.77778

0 1 0 0.44444 -0.44444 39.33333 26.22222

0 1 0 -0.55556 0.55556 10.33333 -10.77778

0 0 1 0.44444 -0.44444 -26.66667 -9.77778

0 0 1 0.44444 -0.44444 12.33333 10.22222

0 0 1 -0.55556 0.55556 -1.66667 -1.77778

The headers for each of the columns for the example design matrix are as

follows and were not placed in the design matrix file used to run randomise.

Group1 Group2 Group3 Site1 Site2 Age Demean Cog Var Demean

In the contrast file, the same headers as the design matrix were used. A

positive correlation was coded as 1 in cognitive variable column, while -1 was used

for a negative correlation. All other columns were set to 0 [180, 193]. An example

contrast matrix to perform correlations that corresponds to the example design matrix

is as follows:

/NumWaves 5

/NumContrasts 2

/Matrix

0 0 0 0 1

0 0 0 0 -1
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Figure A.13: T1-weighted (left) and DTI templates (right) for SPMS data.

Figure A.14: T1-weighted (left) and DTI templates (right) for MPSS data.

A.4 T1 and DTI atlases

A.5 Results for expanded multi-participant, multi-site data

This section contains the full set of results for the cross-sectional fiber track-

ing study performed on the expanded multi-participant, multi-site (EMPMS) data

introduced in Section 4.2.1.4. An abbreviated version of the EMPMS cross-sectional
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Figure A.15: T1-weighted (left) and DTI templates (right) for MPMS data.

fiber tracking study can be found in Section 4.3.6.

A.5.1 Mean DTI scalar values across tracts and tract skeletons

Figures A.16 through A.22 consist of boxplots of mean FA, MD, AD, and RD

across each tract and tract skeleton for controls and each CAP score group (low,

medium, and high). Mean DTI scalars are show for each indivudal tract: FM, left

and right ATRs, left and right inferior fronto-occipital fasciculi, and left and right

uncinate fasciculi. It is important to note that mean DTI scalar values across tract

skeletons are generally greater than those across the tracts.
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Figure A.16: Mean DTI scalars (FA, MD, AD, and RD) across the entire FM tract
and the FM tract skeleton for EMPMS data. FM = Forceps minor. FA = Fractional
anisotropy. MD = Mean diffusivity. AD = Axial diffusivity. RD = Radial diffusivity.
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Figure A.17: Mean DTI scalars (FA, MD, AD, and RD) across the entire right ATR
tract and the right ATR tract skeleton for EMPMS data. Left ATR = Left anterior
thalamic radiations. FA = Fractional anisotropy. MD = Mean diffusivity. AD =
Axial diffusivity. RD = Radial diffusivity.
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Figure A.18: Mean DTI scalars (FA, MD, AD, and RD) across the entire right IFO
tract and the right IFO tract skeleton for EMPMS data. Left IFO = Left inferior
fronto-occipital fasciculus. FA = Fractional anisotropy. MD = Mean diffusivity. AD
= Axial diffusivity. RD = Radial diffusivity.
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Figure A.19: Mean DTI scalars (FA, MD, AD, and RD) across the entire right UNC
tract and the right UNC tract skeleton for EMPMS data. Left UNC = Left unci-
nate fasciculus. FA = Fractional anisotropy. MD = Mean diffusivity. AD = Axial
diffusivity. RD = Radial diffusivity.
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Figure A.20: Mean DTI scalars (FA, MD, AD, and RD) across the entire right ATR
tract and the right ATR tract skeleton for EMPMS data. Right ATR = Right anterior
thalamic radiations. FA = Fractional anisotropy. MD = Mean diffusivity. AD = Axial
diffusivity. RD = Radial diffusivity.
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Figure A.21: Mean DTI scalars (FA, MD, AD, and RD) across the entire right IFO
tract and the right IFO tract skeleton for EMPMS data. Right IFO = Right inferior
fronto-occipital fasciculus. FA = Fractional anisotropy. MD = Mean diffusivity. AD
= Axial diffusivity. RD = Radial diffusivity.
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Figure A.22: Mean DTI scalars (FA, MD, AD, and RD) across the entire right UNC
tract and the right UNC tract skeleton for EMPMS data. Right UNC = Right
uncinate fasciculus. FA = Fractional anisotropy. MD = Mean diffusivity. AD =
Axial diffusivity. RD = Radial diffusivity.
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Table A.1: Summary of partial correlations between SDMT scores and imaging variables from prodromal HD participants
only for left hemisphere regions.

FA MD RD AD WM
Reg N Corr p q Corr p q Corr p q Corr p q Corr p q
1 51 -0.14 0.34 0.88 -0.06 0.70 0.87 -0.02 0.87 0.92 -0.09 0.55 0.82 -0.01 0.94 0.99
2 51 0.13 0.38 0.88 -0.10 0.50 0.82 -0.12 0.41 0.74 -0.06 0.70 0.82 -0.04 0.80 0.99
3 51 0.25 0.09 0.88 -0.08 0.57 0.86 -0.15 0.32 0.74 0.04 0.79 0.82 0.11 0.48 0.99
4 51 0.01 0.95 0.99 0.06 0.68 0.87 0.03 0.85 0.92 0.10 0.51 0.82 -0.02 0.88 0.99
5 51 0.13 0.39 0.88 -0.14 0.35 0.82 -0.20 0.18 0.68 -0.03 0.82 0.82 -0.02 0.89 0.99
6 51 >-0.01 0.99 0.99 -0.14 0.35 0.82 -0.13 0.38 0.74 -0.13 0.38 0.82 0.07 0.64 0.99
7 51 <0.01 0.99 0.99 -0.10 0.49 0.82 -0.09 0.53 0.84 -0.10 0.52 0.82 -0.03 0.83 0.99
8 51 -0.07 0.64 0.99 0.01 0.97 0.97 0.03 0.86 0.92 -0.04 0.81 0.82 0.11 0.45 0.99
9 51 0.04 0.80 0.99 -0.05 0.72 0.87 -0.06 0.69 0.92 -0.03 0.82 0.82 -0.15 0.33 0.99
Source: J. T. Matsui, J. G. Vaidya, H. J. Johnson, V. A. Magnotta, J. D. Long, J. A. Mills, M. J. Lowe, K. E. Sakaie, S.
M. Rao, M. M. Smith, and J. S. Paulsen, Diffusion weighted imaging of prefrontal cortex in prodromal huntingtons disease.,
Human Brain Mapping, 2013.

Note: FDR correction was performed across regions in both hemispheres. The Pearsons correlation analysis included
age, years of education, gender, and site as covariates. WM = white matter volume. Reg = Region. p = Raw p-value. q =
FDR q-value. Region 1 = Left caudal middle frontal. Region 2 = Left frontal pole. Region 3 = Left lateral orbitofrontal.
Region 4 = Left medial orbitofrontal. Region 5 = Left pars opercularis. Region 6 = Left pars orbitalis. Region 7 = Left
pars triangularis. Region 8 = Left rostral middle frontal. Region 9 = Left superior frontal.
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Table A.2: Summary of partial correlations between SDMT scores and imaging variables from prodromal HD participants
only for right hemisphere regions.

FA MD RD AD WM
Reg N Corr p q Corr p q Corr p q Corr p q Corr p q
1 51 -0.07 0.65 0.99 -0.11 0.44 0.82 -0.09 0.54 0.82 -0.12 0.40 0.82 >-0.01 0.99 0.99
2 51 0.21 0.16 0.88 -0.14 0.35 0.82 -0.15 0.32 0.74 -0.11 0.47 0.82 -0.12 0.41 0.99
3 51 0.14 0.33 0.88 -0.18 0.22 0.83 -0.20 0.19 0.68 -0.13 0.40 0.82 0.28 0.06 0.99
4 51 <0.01 0.99 0.99 0.02 0.88 0.97 0.01 0.93 0.93 0.03 0.82 0.82 0.21 0.15 0.99
5 51 0.05 0.73 0.99 -0.18 0.23 0.82 -0.19 0.19 0.68 -0.11 0.46 0.82 -0.07 0.64 0.99
6 51 -0.10 0.49 0.98 -0.28 0.05 0.82 -0.24 0.11 0.68 -0.32∗ 0.03 0.51 -0.01 0.94 0.99
7 51 0.01 0.94 0.99 -0.22 0.14 0.82 -0.23 0.12 0.68 -0.19 0.21 0.82 0.11 0.46 0.99
8 51 -0.17 0.25 0.88 0.01 0.95 0.97 0.05 0.75 0.92 -0.06 0.69 0.82 -0.09 0.56 0.99
9 51 0.14 0.34 0.88 -0.11 0.47 0.82 -0.14 0.35 0.74 -0.05 0.76 0.82 0.11 0.47 0.99
Source: J. T. Matsui, J. G. Vaidya, H. J. Johnson, V. A. Magnotta, J. D. Long, J. A. Mills, M. J. Lowe, K. E. Sakaie, S.
M. Rao, M. M. Smith, and J. S. Paulsen, Diffusion weighted imaging of prefrontal cortex in prodromal huntingtons disease.,
Human Brain Mapping, 2013.

Note: FDR correction was performed across regions in both hemispheres. The Pearsons correlation analysis included
age, years of education, gender, and site as covariates. ∗p < 0.05 before FDR correction. WM = white matter volume. Reg
= Region. p = Raw p-value. q = FDR q-value. Region 1 = Right caudal middle frontal. Region 2 = Right frontal pole.
Region 3 = Right lateral orbitofrontal. Region 4 = Right medial orbitofrontal. Region 5 = Right pars opercularis. Region
6 = Right pars orbitalis. Region 7 = Right pars triangularis. Region 8 = Right rostral middle frontal. Region 9 = Right
superior frontal.
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Table A.3: Summary of partial correlations between Trail Making Test A scores and imaging variables from prodromal HD
participants only for left hemisphere regions.

FA MD RD AD WM
Reg N Corr p q Corr p q Corr p q Corr p q Corr p q
1 51 0.07 0.64 0.99 -0.11 0.46 0.69 -0.11 0.47 0.91 -0.10 0.52 0.67 -0.11 0.46 0.84
2 51 -0.23 0.12 0.99 0.05 0.72 0.81 0.05 0.72 0.91 0.01 0.95 0.95 <0.01 0.99 0.99
3 51 -0.10 0.52 0.99 -0.17 0.25 0.69 -0.10 0.48 0.91 -0.26 0.08 0.30 0.10 0.52 0.84
4 51 -0.02 0.90 0.99 -0.32∗ 0.03 0.39 -0.26 0.07 0.72 -0.32∗ 0.03 0.30 0.23 0.13 0.84
5 51 -0.15 0.30 0.99 -0.08 0.59 0.72 <0.01 0.98 0.98 -0.16 0.27 0.45 <0.01 0.98 0.99
6 51 0.02 0.90 0.99 -0.15 0.33 0.69 -0.13 0.37 0.91 -0.14 0.34 0.50 0.14 0.34 0.84
7 51 -0.10 0.49 0.99 -0.18 0.22 0.69 -0.12 0.44 0.91 -0.26 0.08 0.30 0.13 0.39 0.84
8 51 -0.08 0.61 0.99 -0.14 0.36 0.69 -0.06 0.67 0.91 -0.26 0.07 0.30 0.15 0.32 0.84
9 51 0.01 0.97 0.99 -0.13 0.40 0.69 -0.10 0.52 0.91 -0.16 0.28 0.45 0.09 0.56 0.84
Source: J. T. Matsui, J. G. Vaidya, H. J. Johnson, V. A. Magnotta, J. D. Long, J. A. Mills, M. J. Lowe, K. E. Sakaie, S.
M. Rao, M. M. Smith, and J. S. Paulsen, Diffusion weighted imaging of prefrontal cortex in prodromal huntingtons disease.,
Human Brain Mapping, 2013.

Note: FDR correction was performed across regions in both hemispheres. The Pearsons correlation analysis included
age, years of education, gender, and site as covariates. ∗p < 0.05 before FDR correction. WM = white matter volume. Reg
= Region. p = Raw p-value. q = FDR q-value. Region 1 = Left caudal middle frontal. Region 2 = Left frontal pole. Region
3 = Left lateral orbitofrontal. Region 4 = Left medial orbitofrontal. Region 5 = Left pars opercularis. Region 6 = Left pars
orbitalis. Region 7 = Left pars triangularis. Region 8 = Left rostral middle frontal. Region 9 = Left superior frontal.
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Table A.4: Summary of partial correlations between Trail Making Test A scores and imaging variables from prodromal HD
participants only for right hemisphere regions.

FA MD RD AD WM
Reg N Corr p q Corr p q Corr p q Corr p q Corr p q
1 51 0.01 0.96 0.99 -0.09 0.53 0.72 -0.07 0.64 0.91 -0.11 0.46 0.64 -0.02 0.87 0.98
2 51 0.03 0.84 0.99 0.01 0.96 0.99 -0.03 0.82 0.92 0.03 0.82 0.92 0.22 0.13 0.84
3 51 >-0.01 0.99 0.99 -0.08 0.60 0.72 -0.07 0.62 0.91 -0.08 0.61 0.73 -0.16 0.28 0.84
4 51 -0.02 0.88 0.99 -0.30∗ 0.04 0.39 -0.26 0.08 0.72 -0.29∗ 0.04 0.30 -0.08 0.60 0.84
5 51 >-0.01 0.99 0.99 -0.13 0.39 0.69 -0.08 0.60 0.91 -0.17 0.27 0.45 0.04 0.78 0.98
6 51 0.05 0.72 0.99 <0.01 0.99 0.99 -0.01 0.94 0.98 0.02 0.90 0.95 0.09 0.54 0.84
7 51 -0.11 0.46 0.99 -0.15 0.31 0.69 -0.11 0.47 0.91 -0.19 0.20 0.45 0.16 0.29 0.84
8 51 -0.12 0.44 0.99 -0.12 0.43 0.69 -0.05 0.76 0.91 -0.23 0.12 0.35 0.08 0.61 0.84
9 51 -0.03 0.87 0.99 -0.11 0.44 0.69 -0.08 0.60 0.91 -0.16 0.27 0.45 0.03 0.85 0.98
Source: J. T. Matsui, J. G. Vaidya, H. J. Johnson, V. A. Magnotta, J. D. Long, J. A. Mills, M. J. Lowe, K. E. Sakaie, S.
M. Rao, M. M. Smith, and J. S. Paulsen, Diffusion weighted imaging of prefrontal cortex in prodromal huntingtons disease.,
Human Brain Mapping, 2013.

Note: FDR correction was performed across regions in both hemispheres. The Pearsons correlation analysis included
age, years of education, gender, and site as covariates. ∗p < 0.05 before FDR correction. WM = white matter volume. Reg
= Region. p = Raw p-value. q = FDR q-value. Region 1 = Right caudal middle frontal. Region 2 = Right frontal pole.
Region 3 = Right lateral orbitofrontal. Region 4 = Right medial orbitofrontal. Region 5 = Right pars opercularis. Region
6 = Right pars orbitalis. Region 7 = Right pars triangularis. Region 8 = Right rostral middle frontal. Region 9 = Right
superior frontal.
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Table A.5: Summary of partial correlations between Trail Making Test B scores and imaging variables from prodromal HD
participants only for left hemisphere regions.

FA MD RD AD WM
Reg N Corr p q Corr p q Corr p q Corr p q Corr p q
1 50 -0.31∗ 0.04 0.10 0.11 0.45 0.51 0.21 0.15 0.23 -0.03 0.85 0.99 0.08 0.58 0.81
2 50 -0.23 0.12 0.16 0.05 0.73 0.73 0.06 0.71 0.71 0.01 0.96 0.99 0.02 0.89 0.94
3 50 -0.33∗ 0.02 0.09 0.19 0.21 0.39 0.25 0.09 0.19 0.05 0.73 0.99 -0.03 0.84 0.94
4 50 -0.24 0.11 0.16 0.14 0.34 0.48 0.21 0.17 0.23 <0.01 0.99 0.99 0.09 0.53 0.81
5 50 -0.23 0.12 0.16 0.17 0.25 0.39 0.24 0.11 0.19 0.05 0.73 0.99 0.20 0.19 0.69
6 50 -0.27 0.07 0.15 0.17 0.25 0.39 0.21 0.16 0.23 0.10 0.53 0.99 0.30∗ 0.04 0.55
7 50 -0.32∗ 0.03 0.09 0.17 0.26 0.39 0.24 0.10 0.19 0.01 0.97 0.99 0.25 0.09 0.55
8 50 -0.17 0.26 0.32 0.19 0.21 0.39 0.19 0.20 0.24 0.14 0.35 0.99 0.08 0.59 0.81
9 50 -0.26 0.08 0.15 0.12 0.42 0.51 0.16 0.27 0.31 0.02 0.89 0.99 0.15 0.32 0.75
Source: J. T. Matsui, J. G. Vaidya, H. J. Johnson, V. A. Magnotta, J. D. Long, J. A. Mills, M. J. Lowe, K. E. Sakaie, S.
M. Rao, M. M. Smith, and J. S. Paulsen, Diffusion weighted imaging of prefrontal cortex in prodromal huntingtons disease.,
Human Brain Mapping, 2013.

Note: FDR correction was performed across regions in both hemispheres. The Pearsons correlation analysis included
age, years of education, gender, and site as covariates. ∗p < 0.05 before FDR correction. WM = white matter volume. Reg
= Region. p = Raw p-value. q = FDR q-value. Region 1 = Left caudal middle frontal. Region 2 = Left frontal pole. Region
3 = Left lateral orbitofrontal. Region 4 = Left medial orbitofrontal. Region 5 = Left pars opercularis. Region 6 = Left pars
orbitalis. Region 7 = Left pars triangularis. Region 8 = Left rostral middle frontal. Region 9 = Left superior frontal.
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Table A.6: Summary of partial correlations between Trail Making Test B scores and imaging variables from prodromal HD
participants only for right hemisphere regions.

FA MD RD AD WM
Reg N Corr p q Corr p q Corr p q Corr p q Corr p q
1 50 -0.24 0.11 0.16 0.21 0.16 0.39 0.28 0.06 0.19 0.08 0.61 0.99 0.12 0.42 0.75
2 50 -0.12 0.42 0.42 0.08 0.60 0.63 0.09 0.53 0.57 0.06 0.67 0.99 0.13 0.38 0.75
3 50 -0.36∗ 0.03 0.07 0.35∗ 0.02 0.16 0.39∗∗ 0.01 0.07 0.22 0.14 0.83 -0.12 0.42 0.75
4 50 -0.43∗∗∗† <0.01 0.04 0.13 0.40 0.51 0.25 0.09 0.19 -0.06 0.67 0.99 -0.25 0.09 0.55
5 50 -0.42∗∗∗† <0.01 0.04 0.23 0.12 0.39 0.36∗ 0.01 0.08 >-0.01 0.98 0.99 -0.01 0.95 0.95
6 50 -0.14 0.36 0.40 0.30∗ 0.05 0.28 0.30∗ 0.04 0.19 0.26 0.09 0.83 0.21 0.17 0.69
7 50 -0.40∗∗† <0.01 0.04 0.35* 0.02 0.16 0.44∗∗∗† <0.01 0.04 0.20 0.19 0.83 0.04 0.82 0.94
8 50 -0.13 0.38 0.40 0.26 0.08 0.36 0.24 0.10 0.19 0.25 0.09 0.83 0.13 0.38 0.75
9 50 -0.26 0.08 0.15 0.18 0.23 0.39 0.20 0.18 0.23 0.11 0.45 0.99 -0.03 0.83 0.94
Source: J. T. Matsui, J. G. Vaidya, H. J. Johnson, V. A. Magnotta, J. D. Long, J. A. Mills, M. J. Lowe, K. E. Sakaie, S.
M. Rao, M. M. Smith, and J. S. Paulsen, Diffusion weighted imaging of prefrontal cortex in prodromal huntingtons disease.,
Human Brain Mapping, 2013.

Note: FDR correction was performed across regions in both hemispheres. The Pearsons correlation analysis included
age, years of education, gender, and site as covariates. ∗p < 0.05 before FDR correction. ∗∗p < 0.01 before FDR correction.
∗∗∗p < 0.005 before FDR correction. †p < 0.05 after FDR correction. WM = white matter volume. Reg = Region. p =
Raw p-value. q = FDR q-value. Region 1 = Right caudal middle frontal. Region 2 = Right frontal pole. Region 3 = Right
lateral orbitofrontal. Region 4 = Right medial orbitofrontal. Region 5 = Right pars opercularis. Region 6 = Right pars
orbitalis. Region 7 = Right pars triangularis. Region 8 = Right rostral middle frontal. Region 9 = Right superior frontal.
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Table A.7: Summary of partial correlations between Stroop Word scores and imaging variables from prodromal HD partici-
pants for left hemisphere regions.

FA MD RD AD WM
Reg N Corr p q Corr p q Corr p q Corr p q Corr p q
1 49 0.04 0.78 0.81 -0.18 0.25 0.35 -0.19 0.20 0.24 -0.13 0.41 0.67 -0.03 0.82 0.95
2 49 0.27 0.07 0.19 -0.22 0.15 0.26 -0.24 0.12 0.16 -0.16 0.29 0.65 -0.09 0.56 0.95
3 49 0.35∗ 0.02 0.18 -0.15 0.31 0.38 -0.25 0.10 0.16 0.02 0.87 0.88 0.01 0.94 0.95
4 49 0.12 0.42 0.50 -0.05 0.73 0.73 -0.11 0.47 0.47 0.04 0.80 0.88 -0.10 0.51 0.95
5 49 0.14 0.34 0.46 -0.18 0.23 0.35 -0.25 0.09 0.16 -0.05 0.74 0.88 -0.09 0.54 0.95
6 49 0.29 0.05 0.18 -0.17 0.25 0.35 -0.23 0.13 0.17 -0.08 0.62 0.86 0.04 0.79 0.95
7 49 0.30∗ 0.05 0.18 -0.16 0.29 0.37 -0.25 0.10 0.16 0.03 0.86 0.88 0.05 0.75 0.95
8 49 0.21 0.17 0.34 -0.23 0.12 0.24 -0.25 0.10 0.16 -0.14 0.36 0.65 0.07 0.65 0.95
9 49 0.31∗ 0.04 0.18 -0.24 0.11 0.24 -0.28 0.07 0.16 -0.15 0.34 0.65 -0.33∗ 0.03 0.46
Source: J. T. Matsui, J. G. Vaidya, H. J. Johnson, V. A. Magnotta, J. D. Long, J. A. Mills, M. J. Lowe, K. E. Sakaie, S.
M. Rao, M. M. Smith, and J. S. Paulsen, Diffusion weighted imaging of prefrontal cortex in prodromal huntingtons disease.,
Human Brain Mapping, 2013.

Note: FDR correction was performed across regions in both hemispheres. The Pearsons correlation analysis included
age, years of education, gender, and site as covariates. ∗p < 0.05 before FDR correction. WM = white matter volume. Reg
= Region. p = Raw p-value. q = FDR q-value. Region 1 = Left caudal middle frontal. Region 2 = Left frontal pole. Region
3 = Left lateral orbitofrontal. Region 4 = Left medial orbitofrontal. Region 5 = Left pars opercularis. Region 6 = Left pars
orbitalis. Region 7 = Left pars triangularis. Region 8 = Left rostral middle frontal. Region 9 = Left superior frontal.
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Table A.8: Summary of partial correlations between Stroop Word scores and imaging variables from prodromal HD partici-
pants for right hemisphere regions.

FA MD RD AD WM
Reg N Corr p q Corr p q Corr p q Corr p q Corr p q
1 49 0.10 0.51 0.58 -0.25 0.09 0.24 -0.27 0.08 0.16 -0.18 0.23 0.65 0.17 0.26 0.95
2 49 -0.04 0.81 0.81 0.14 0.35 0.40 0.14 0.36 0.41 0.15 0.33 0.65 -0.05 0.77 0.95
3 49 0.26 0.09 0.20 -0.38∗∗ 0.01 0.16 -0.39∗∗ 0.01 0.08 -0.30∗ 0.05 0.52 0.10 0.53 0.95
4 49 0.16 0.29 0.44 -0.08 0.58 0.62 -0.12 0.45 0.47 -0.02 0.88 0.88 0.15 0.34 0.95
5 49 0.17 0.26 0.43 -0.27 0.08 0.23 -0.33∗ 0.03 0.08 -0.11 0.47 0.70 -0.07 0.67 0.95
6 49 0.14 0.36 0.46 -0.32∗ 0.03 0.16 -0.33∗ 0.02 0.08 -0.27 0.08 0.52 -0.16 0.29 0.95
7 49 0.27 0.07 0.19 -0.29 0.06 0.20 -0.36∗ 0.02 0.08 -0.17 0.25 0.65 -0.07 0.64 0.95
8 49 0.17 0.26 0.43 -0.33∗ 0.03 0.16 -0.34∗ 0.02 0.08 -0.26 0.09 0.52 0.02 0.90 0.95
9 49 0.32∗ 0.03 0.18 -0.32∗ 0.03 0.16 -0.34∗ 0.02 0.08 -0.23 0.13 0.57 0.01 0.95 0.95
Source: J. T. Matsui, J. G. Vaidya, H. J. Johnson, V. A. Magnotta, J. D. Long, J. A. Mills, M. J. Lowe, K. E. Sakaie, S.
M. Rao, M. M. Smith, and J. S. Paulsen, Diffusion weighted imaging of prefrontal cortex in prodromal huntingtons disease.,
Human Brain Mapping, 2013.

Note: FDR correction was performed across regions in both hemispheres. The Pearsons correlation analysis included
age, years of education, gender, and site as covariates. ∗p < 0.05 before FDR correction. ∗∗p < 0.01 before FDR correction.
WM = white matter volume. Reg = Region. p = Raw p-value. q = FDR q-value. Region 1 = Right caudal middle frontal.
Region 2 = Right frontal pole. Region 3 = Right lateral orbitofrontal. Region 4 = Right medial orbitofrontal. Region 5
= Right pars opercularis. Region 6 = Right pars orbitalis. Region 7 = Right pars triangularis. Region 8 = Right rostral
middle frontal. Region 9 = Right superior frontal.
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Table A.9: Summary of partial correlations between Stroop Color scores and imaging variables from prodromal HD partici-
pants for left hemisphere regions.

FA MD RD AD WM
Reg N Corr p q Corr p q Corr p q Corr p q Corr p q
1 49 -0.02 0.89 0.94 -0.13 0.40 0.56 -0.12 0.42 0.57 -0.11 0.47 0.74 -0.08 0.60 0.88
2 49 0.24 0.12 0.83 -0.10 0.52 0.59 -0.11 0.47 0.57 -0.03 0.86 0.91 -0.10 0.52 0.88
3 49 0.33∗ 0.03 0.45 -0.18 0.23 0.48 -0.27 0.08 0.38 -0.01 0.93 0.93 0.07 0.65 0.88
4 49 0.13 0.38 0.85 0.04 0.81 0.81 -0.03 0.83 0.83 0.11 0.46 0.74 -0.19 0.21 0.74
5 49 0.02 0.88 0.95 -0.23 0.14 0.48 -0.23 0.13 0.38 -0.16 0.31 0.74 0.06 0.71 0.88
6 49 0.15 0.32 0.83 -0.12 0.45 0.56 -0.14 0.37 0.57 -0.08 0.62 0.74 0.04 0.78 0.88
7 49 0.16 0.29 0.83 -0.16 0.31 0.55 -0.20 0.19 0.48 -0.04 0.78 0.88 0.10 0.50 0.88
8 49 0.09 0.54 0.94 -0.12 0.42 0.56 -0.13 0.39 0.57 -0.08 0.62 0.74 0.27 0.07 0.67
9 49 0.04 0.78 0.94 -0.11 0.46 0.56 -0.10 0.51 0.57 -0.12 0.42 0.74 -0.03 0.83 0.88
Source: J. T. Matsui, J. G. Vaidya, H. J. Johnson, V. A. Magnotta, J. D. Long, J. A. Mills, M. J. Lowe, K. E. Sakaie, S.
M. Rao, M. M. Smith, and J. S. Paulsen, Diffusion weighted imaging of prefrontal cortex in prodromal huntingtons disease.,
Human Brain Mapping, 2013.

Note: FDR correction was performed across regions in both hemispheres. The Pearsons correlation analysis included
age, years of education, gender, and site as covariates. ∗p < 0.05 before FDR correction. WM = white matter volume. Reg
= Region. p = Raw p-value. q = FDR q-value. Region 1 = Left caudal middle frontal. Region 2 = Left frontal pole. Region
3 = Left lateral orbitofrontal. Region 4 = Left medial orbitofrontal. Region 5 = Left pars opercularis. Region 6 = Left pars
orbitalis. Region 7 = Left pars triangularis. Region 8 = Left rostral middle frontal. Region 9 = Left superior frontal.
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Table A.10: Summary of partial correlations between Stroop Color scores and imaging variables from prodromal HD partic-
ipants for right hemisphere regions.

FA MD RD AD WM
Reg N Corr p q Corr p q Corr p q Corr p q Corr p q
1 49 0.04 0.81 0.94 -0.19 0.21 0.48 -0.18 0.24 0.48 -0.16 0.28 0.74 0.11 0.47 0.88
2 49 -0.07 0.64 0.94 0.12 0.43 0.56 0.10 0.49 0.57 0.15 0.34 0.74 -0.02 0.91 0.91
3 49 0.22 0.14 0.83 -0.36∗ 0.02 0.29 -0.36∗ 0.01 0.27 -0.29 0.06 0.74 0.20 0.19 0.74
4 49 <0.01 0.98 0.98 -0.08 0.59 0.63 -0.08 0.62 0.66 -0.08 0.62 0.74 0.13 0.40 0.88
5 49 0.06 0.70 0.94 -0.24 0.11 0.48 -0.26 0.09 0.38 -0.15 0.32 0.74 0.09 0.54 0.88
6 49 0.16 0.31 0.83 -0.23 0.13 0.48 -0.25 0.10 0.38 -0.18 0.24 0.74 -0.03 0.82 0.88
7 49 0.18 0.23 0.83 -0.19 0.22 0.48 -0.24 0.11 0.38 -0.10 0.52 0.74 -0.06 0.70 0.88
8 49 0.02 0.87 0.94 -0.20 0.19 0.48 -0.19 0.22 0.48 -0.18 0.23 0.74 0.31∗ 0.04 0.67
9 49 0.10 0.52 0.94 -0.18 0.24 0.48 -0.17 0.27 0.48 -0.18 0.23 0.74 0.24 0.11 0.68
Source: J. T. Matsui, J. G. Vaidya, H. J. Johnson, V. A. Magnotta, J. D. Long, J. A. Mills, M. J. Lowe, K. E. Sakaie, S.
M. Rao, M. M. Smith, and J. S. Paulsen, Diffusion weighted imaging of prefrontal cortex in prodromal huntingtons disease.,
Human Brain Mapping, 2013.

Note: FDR correction was performed across regions in both hemispheres. The Pearsons correlation analysis included
age, years of education, gender, and site as covariates. ∗p < 0.05 before FDR correction. WM = white matter volume. Reg
= Region. p = Raw p-value. q = FDR q-value. Region 1 = Right caudal middle frontal. Region 2 = Right frontal pole.
Region 3 = Right lateral orbitofrontal. Region 4 = Right medial orbitofrontal. Region 5 = Right pars opercularis. Region
6 = Right pars orbitalis. Region 7 = Right pars triangularis. Region 8 = Right rostral middle frontal. Region 9 = Right
superior frontal.



www.manaraa.com

241

Table A.11: Summary of partial correlations between Stroop Interference scores and imaging variables from prodromal HD
participants only for left hemisphere regions.

FA MD RD AD WM
Reg N Corr p q Corr p q Corr p q Corr p q Corr p q
1 49 0.04 0.79 0.84 -0.02 0.89 0.89 -0.05 0.73 0.82 0.02 0.89 0.96 0.11 0.49 0.83
2 49 0.20 0.20 0.74 -0.06 0.67 0.85 -0.10 0.51 0.76 0.01 0.96 0.96 -0.06 0.71 0.87
3 49 0.31∗ 0.04 0.52 -0.06 0.71 0.85 -0.15 0.32 0.73 0.11 0.46 0.89 0.02 0.88 0.88
4 49 0.03 0.87 0.87 0.15 0.33 0.81 0.10 0.49 0.76 0.17 0.27 0.89 -0.17 0.26 0.66
5 49 0.12 0.42 0.83 -0.11 0.48 0.85 -0.19 0.22 0.66 0.01 0.92 0.96 0.16 0.29 0.66
6 49 0.07 0.63 0.83 -0.07 0.65 0.85 -0.06 0.69 0.82 -0.07 0.65 0.89 -0.04 0.80 0.87
7 49 0.07 0.65 0.83 -0.04 0.79 0.85 -0.07 0.66 0.82 0.02 0.92 0.96 0.16 0.28 0.66
8 49 0.14 0.37 0.83 -0.09 0.57 0.85 -0.11 0.48 0.76 -0.01 0.93 0.96 0.29 0.06 0.66
9 49 0.08 0.60 0.83 -0.09 0.55 0.85 -0.07 0.63 0.82 -0.10 0.50 0.89 -0.15 0.33 0.66
Source: J. T. Matsui, J. G. Vaidya, H. J. Johnson, V. A. Magnotta, J. D. Long, J. A. Mills, M. J. Lowe, K. E. Sakaie, S.
M. Rao, M. M. Smith, and J. S. Paulsen, Diffusion weighted imaging of prefrontal cortex in prodromal huntingtons disease.,
Human Brain Mapping, 2013.

Note: FDR correction was performed across regions in both hemispheres. The Pearsons correlation analysis included
age, years of education, gender, and site as covariates. ∗p < 0.05 before FDR correction. WM = white matter volume. Reg
= Region. p = Raw p-value. q = FDR q-value. Region 1 = Left caudal middle frontal. Region 2 = Left frontal pole. Region
3 = Left lateral orbitofrontal. Region 4 = Left medial orbitofrontal. Region 5 = Left pars opercularis. Region 6 = Left pars
orbitalis. Region 7 = Left pars triangularis. Region 8 = Left rostral middle frontal. Region 9 = Left superior frontal.
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Table A.12: Summary of partial correlations between Stroop Interference scores and imaging variables from prodromal HD
participants only for right hemisphere regions.

FA MD RD AD WM
Reg N Corr p q Corr p q Corr p q Corr p q Corr p q
1 49 0.10 0.52 0.83 -0.14 0.36 0.81 -0.16 0.28 0.73 -0.08 0.61 0.89 0.16 0.31 0.66
2 49 0.10 0.51 0.83 0.04 0.81 0.85 0.03 0.84 0.89 0.08 0.61 0.89 -0.08 0.62 0.87
3 49 0.26 0.09 0.52 -0.27 0.07 0.75 -0.30∗ 0.05 0.55 -0.18 0.25 0.89 0.21 0.17 0.66
4 49 -0.05 0.73 0.84 -0.05 0.73 0.85 -0.02 0.91 0.91 -0.09 0.56 0.89 0.05 0.72 0.87
5 49 0.08 0.61 0.83 -0.20 0.18 0.75 -0.25 0.09 0.55 -0.08 0.59 0.89 0.10 0.51 0.83
6 49 0.11 0.45 0.83 -0.19 0.21 0.75 -0.19 0.22 0.66 -0.17 0.25 0.89 -0.03 0.82 0.87
7 49 0.26 0.09 0.52 -0.20 0.19 0.75 -0.27 0.07 0.55 -0.09 0.55 0.89 0.05 0.76 0.87
8 49 0.04 0.79 0.84 -0.14 0.35 0.81 -0.13 0.38 0.75 -0.13 0.40 0.89 0.21 0.16 0.66
9 49 0.19 0.21 0.74 -0.21 0.17 0.75 -0.20 0.18 0.66 -0.18 0.24 0.89 0.21 0.17 0.66
Source: J. T. Matsui, J. G. Vaidya, H. J. Johnson, V. A. Magnotta, J. D. Long, J. A. Mills, M. J. Lowe, K. E. Sakaie, S.
M. Rao, M. M. Smith, and J. S. Paulsen, Diffusion weighted imaging of prefrontal cortex in prodromal huntingtons disease.,
Human Brain Mapping, 2013.

Note: FDR correction was performed across regions in both hemispheres. The Pearsons correlation analysis included
age, years of education, gender, and site as covariates. ∗p < 0.05 before FDR correction. WM = white matter volume. Reg
= Region. p = Raw p-value. q = FDR q-value. Region 1 = Right caudal middle frontal. Region 2 = Right frontal pole.
Region 3 = Right lateral orbitofrontal. Region 4 = Right medial orbitofrontal. Region 5 = Right pars opercularis. Region
6 = Right pars orbitalis. Region 7 = Right pars triangularis. Region 8 = Right rostral middle frontal. Region 9 = Right
superior frontal.
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APPENDIX B
LONGITUDINAL FIBER TRACKING STUDY SUPPLEMENTAL

MATERIAL

B.1 GLM for randomise: linear mixed effects analysis

Three files were required to build a linear mixed effects GLM in randomise for

two time points: design matrix, contrast, and group files. All time points for a given

participant was considered a block for permuting. Random effects for individual

participants were accounted for with intercept columns for each participant in the

design matrix. Age was used as time indicators, where each group had a column for

age in the design matrix. The remaining covariates (gender, education in years, and

site of data acquisition) were each represented in the design matrix with a column for

each group. A simplified design matrix for comparing mean change in two groups with

six participants over two time points, where age, gender, and two sites are covariates

(covariates were demeaned before being split into columns) is shown below [193, 180]:

/NumWaves 14

/NumPoints 12

/Matrix

-0.5 0 0.5 0 0.5 0 -0.5 0 1 0 0 0 0 0

1.5 0 0.5 0 0.5 0 -0.5 0 1 0 0 0 0 0

38.5 0 -0.5 0 -0.5 0 0.5 0 0 1 0 0 0 0

40.5 0 -0.5 0 -0.5 0 0.5 0 0 1 0 0 0 0

-25.5 0 -0.5 0 -0.5 0 0.5 0 0 0 1 0 0 0
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-23.5 0 -0.5 0 -0.5 0 0.5 0 0 0 1 0 0 0

0 3.5 0 0.5 0 0.5 0 -0.5 0 0 0 1 0 0

0 5.5 0 0.5 0 0.5 0 -0.5 0 0 0 1 0 0

0 -17.5 0 0.5 0 -0.5 0 0.5 0 0 0 0 1 0

0 -15.5 0 0.5 0 -0.5 0 0.5 0 0 0 0 1 0

0 -4.5 0 -0.5 0 0.5 0 -0.5 0 0 0 0 0 1

0 -2.5 0 -0.5 0 0.5 0 -0.5 0 0 0 0 0 1

The headers for the columns of the above example design matrix are as follows

and were not placed in the design matrix file used to run randomise (G = group, S

= subject, Int = intercept):

G1Age G2Age G1Gender G2Gender G1Site1 G2Site1 G1Site2 G2Site2 S1Int

S2Int S3Int S4Int S5Int S6Int

The contrast file contained the contrasts and had the same column headers

as the design matrix but slightly different header information. Below is an example

contrast corresponding to the example design matrix to test if group 2 is increasing

faster than group 1 (or is group 1 is decreasing faster than group 2):

/NumWaves 14

/NumContrasts 1

/Matrix

-1 1 0 0 0 0 0 0 0 0 0 0 0 0

The group file contained a single column assigning a number to each partici-

pant, making each participant a permutable block for randomise:
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/NumWaves 1

/NumPoints 12

/Matrix

1

1

2

2

3

3

4

4

5

5

6

6
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